

Estimating spatial and temporal beta-diversity of plant communities from spaceborne hyperspectral data

Simon Ferrier (CSIRO)

Pedro Leitão (Technische Universität Braunschweig)

With thanks to: Kerry Cawse-Nicholson, Chris Ware, Karel Mokany, Tom Harwood,
Andrew Hoskins, Mike Harfoot

CSIRO LAND & WATER www.csiro.au

Biodiversity crisis is now attracting significant attention

The Global Assessment Report on Biodiversity and Ecosystem Services

Kompany dividend
Man City on verge of title
Match report Sport

The

Aguide for
the age of
dishonesty of

Kompany dividend
Man City on verge of title

Match report Sport

The

Tuesday
7 May 2019
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.20
72.

Humanity facing 'urgent threat' from loss of Earth's natural life

Landmark UN report says a million species at risk of extinction

Jonathan Watts Global environment editor

Human society is in jeopardy from the accelerating decline of the Earth's natural life-support systems, the world's leading scientists have warned as they announced the results of the

ever undertaken. From coral reefs flickering out beneath the oceans to rainforests des-

beneath the oceans to rainforests desiccating into savannahs, nature is being destroyed at a rate tens to hundreds of times higher than the average over the past 10m years, according to the UN Global Assessment Report.

The biomass of wild mammals has

The biomass of wild mammals has fallen by 82%, natural ecosystems have lost about half their area and a million species are at risk of extinction—all largely as a result of human actions, said the study, compiled over

three years by more than 450 scientists and diplomats. Two in five amphibian species are

Two in five amphibian species are arisk of extinction, as are about one-third of reef-forming corals and close to one-third of reef-forming corals and close to one-third of either marine species. The picture for insects – which are crucial to plant pollination – is less clear, but conservative estimates suggest at less tone in 10 are threatened with extinction and, in some regions, populations have crashed. In economic terms, the losses are juw-dropping. Pollinator loss has put

as much as \$577bn (£440bn) of crop

'We should have gone to the doctor sooner. We are in a bad way'

Prof Andy Purvis

output at risk, while land degradation has reduced the productivity of 23% of global land. The knock-on impacts on humankind, including freshwater shortages and climate instability, were already "ominious" and would wersen without drastic remedial action, the authors on the control of the intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBSS). "We are cooling the very foundations of the control o

Outrage over Farage 'conspiracy theories'

Exclusive Peter Wallo

from Jewish organisations and other groups after he repeatedly took part in interviews with a far-right US tallshow host, in which the Brexit party leader openly discussed compiracy theories, some of them antisemitic.

Farage has appeared at least s times on the show presented by Al Jones, a notorious figure who was su by bereaved parents after claiming a primary school massacre was fake

Overjoyed royals welcome baby son

The Duke and Duchess of Sussex yesterday announced the birth of their baby boy, who will be seventh in line to the throne. At a hastily arranged press conference, Prince Harry said both mother and baby were doing well and that his new son was

POLICYFORUM

FCOLOGY

Essential Biodiversity Variables

H. M. Pereira, "† S. Ferrier," M. Walters, G. N. Geller, R. H. G. Jongman, R. J. Scholes, M. W. Bruford, "N. Brummitt," S. H. M. Butchart, R. C. Cardoso, "N. C. Coops, "E. Dulloo," D. P. Faith: "J. Fowyhof: "B. D. Gregory, "C. Hein: 15 R. Höft: 15 Hurth: "W. Letz," D. S. Kom: 1 A global system of harmonized observations is needed to inform scientists and policy-makers.

M. A. McGeoch. J. P. W. Scharle Scenarios for biodiversity & ecosystem services (e.g. for IPBES) reasserted by Parties to the tion on Biologi ure to meet the High-level indicators of biodiversity there is no glo system for deli & ecosystem services (e.g. for CBD) biodiversity ch meeting of the Policy Platform tem Services (ners from the Ancillary attributes Ecosystem-service Biodiversity (BON) (4) are ((slow changing) valuation & other data sensus around-Observations ables (EBVs) Observations of policy monitoring pro of drivers & & management Despite pro **Essential Biodiversity** of biodiversity pressures responses (5), there is ins Variables regional biodiy of such inform human and fit Genetic composition Community composition obstacle is the to monitor. Ma could be integra Species populations Ecosystem structure vation network tant gaps remai projects adopt Species traits Ecosystem function some important as genetic diver The EBV Essential Clir Primary observations of guide impleme Observing Sy change in state of biodiversity Remote In-situ monitoring sensing

Estuary sediment and vegetation patterns in Australia, captured by NASA's Lundout 8 satellite in 2013.

Agree on biodiversity metrics to track from space

Ecologists and space agencies must forge a global monitoring strategy, say Andrew K. Skidmore, Nathalie Pettorelli and colleagues.

I obtal biodiversity loss is intensifying.

But II is hard to assess progress towards the Aicht Biodiversity Targets for 2011–20 set by the Convention on Biological Diversity (CBD). Target 5, for instance, aims to halve global deforestation rates by 2020; but reliable indicators for deforestation that can be monitored emotily have not been developed or agreed on. National biodiversity monitoring programmes differ widely, most data sets are inconsistent, and few data are shared openly.

To focus priorities, ecologists have proposed classes of besential biodiversity variables*—including species traits and populations, and ecosystem function and structure*. But measuring these on the ground is laborious and limited. Satellite remote sensing is crucial to getting long-term global coverage. It can rapidly reveal where to reverse the loss of biological diversity on a wide range of scales in a consistent, borderless and repeatable manner. Quantities such as vegetation productivity or leaf cover can be measured across continents from space. But there is no agreement on how to translate these measurements into metrics that are relevant for biodiversity monitoring.

We call on conservation and space agencies to agree on a definitive set of brodiversity variables and how these will be tracked from space, to address conservation targets. Methods to derive these variables and the set of satellites needed to observe them must also be decided, to ensure continuous >

23 JULY 2015 | VOL 222 | NATURE | 402

© 2015 Macmitten Publishers Limited. All rights reserved

POLICYFORUM

ECOLOGY

Essential Biodiversity Variables

H. M. Pereira, "† S. Ferrier; M. Walters, G. N. Geller, R. H. G. Jongman, R. J. Scholes, M. W. Bruford, "N. Brummitt," S. H. M. Butchart, R. C. Cardoso, "N. C. Coops, "E. Dulloo," D. P. Faith: "J. Fowyhof: B. D. Gennory, M.C. Hein, 15R. Höß: 1G. Hurtt "W. Jetz = D. S. Korm. A global system of harmonized observations is needed to inform scientists and policy-makers.

M. A. McGeoch. J. P. W. Scharle Scenarios for biodiversity & ecosystem services (e.g. for IPBES) reasserted by Parties to the tion on Biologi ure to meet the High-level indicators of biodiversity there is no glo system for deli & ecosystem services (e.g. for CBD) biodiversity ch meeting of the Policy Platform tem Services (ners from the Ancillary attributes Ecosystem-service Biodiversity (BON) (4) are ((slow changing) valuation & other data sensus around-Observations ables (EBVs) Observations of policy monitoring pro of drivers & & management Despite pro **Essential Biodiversity** of biodiversity pressures responses (5), there is ins Variables. regional biodiy of such inform Community composition human and fit Genetic composition obstacle is the to monitor. Ma could be integra Species populations Ecosystem structure vation network tant gaps remai projects adopt Species traits Ecosystem function some important as genetic diver The EBV Essential Clir Primary observations of guide impleme Observing Sy change in state of biodiversity Remote In-situ monitoring sensing

Estuary sediment and vegetation patterns in Australia, captured by NASA's Lundout 8 satellite in 2013.

Agree on biodiversity metrics to track from space

Ecologists and space agencies must forge a global monitoring strategy, say Andrew K. Skidmore, Nathalie Pettorelli and colleagues.

lobal blodwersty loss is intensifying.
But It is hard to assess progress towards the Aicht Biodwersty Targets for 2011-20 set by the Convention on Biological Diversity (CBD). Target 5, for instance, aims to halve global deforestation rates by 2020; but reliable indicators for deforestation that can be monitored emotely bave not been developed or agreed on. National biodwersity monitoring programmes differ widely, most data sets are inconsistent, and few data are shared openly.

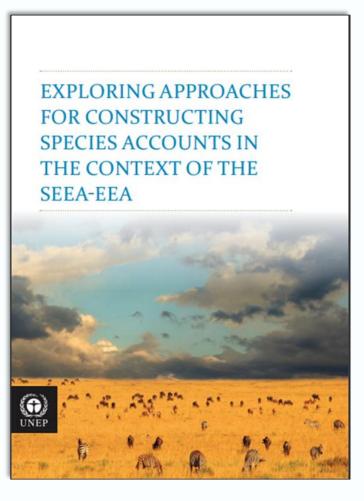
To focus priorities, ecologists have proposed classes of besential biodiversity variables*—including species traits and populations, and ecosystem function and structure*. But measuring these on the ground is laborious and limited. Satellite remote sensing is crucial to getting long-term global coverage. It can rapidly reveal where to reverse the loss of biological diversity on a wide range of scales in a consistent, borderless and repeatable manner. Quantities such as vegetation productivity or leaf cover can be measured across continents from space. But there is no agreement on how to translate these measurements into metrics that are relevant for biodiversity monitoring.

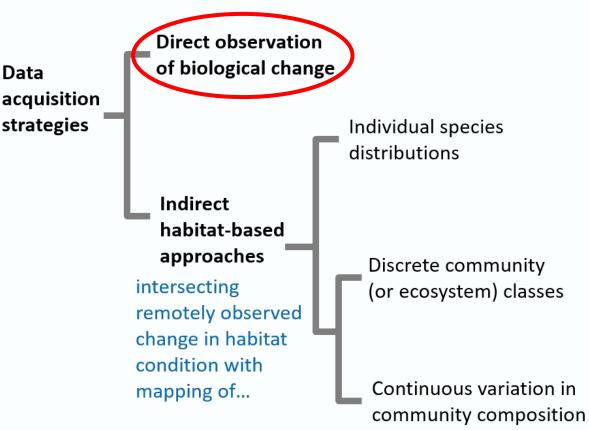
We call on conservation and space agencies to agree on a definitive set of biodiversity variables and how these will be tracked from space, to address conservation largets. Methods to derive these variables and the set of satellites needed to observe them must also be decided, to ensure continuous >

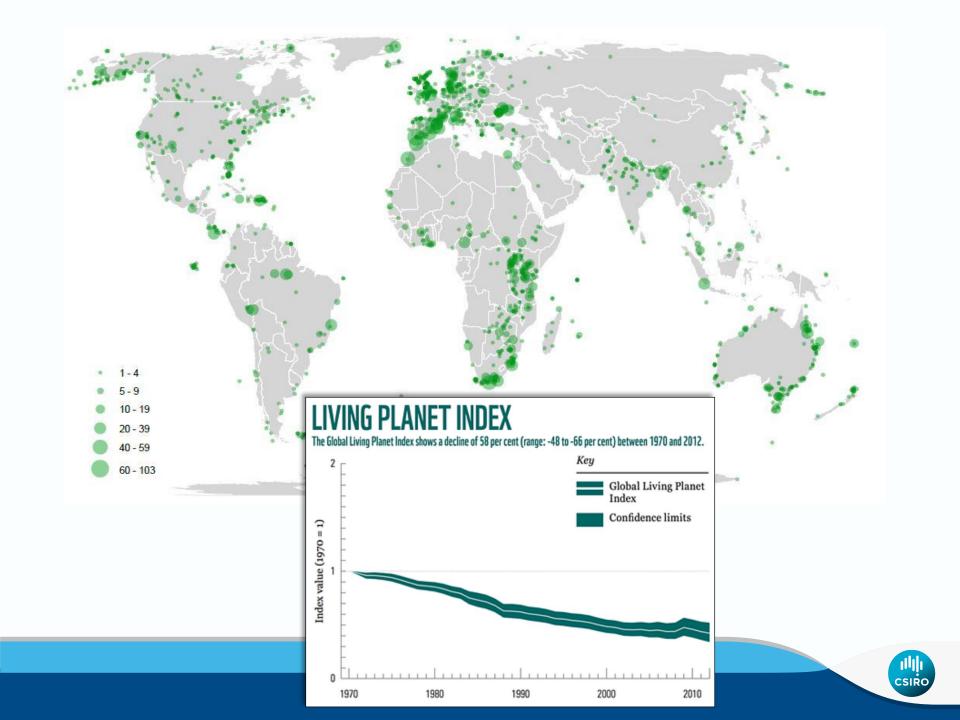
23 JULY 2015 | VOL 222 | NATURE | 402

© 2015 Macmillan Publishers Limited, All rights reserved

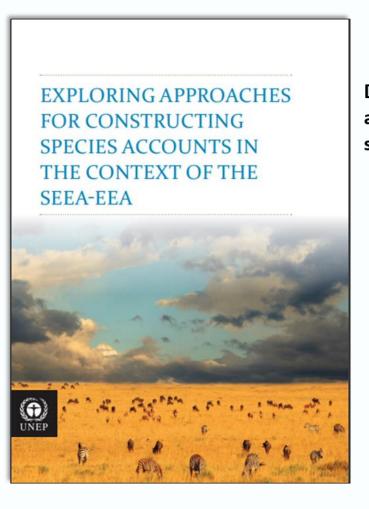
Broad approaches to monitoring biodiversity change

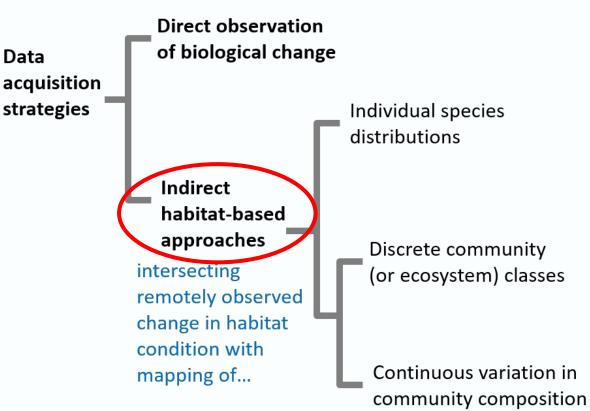




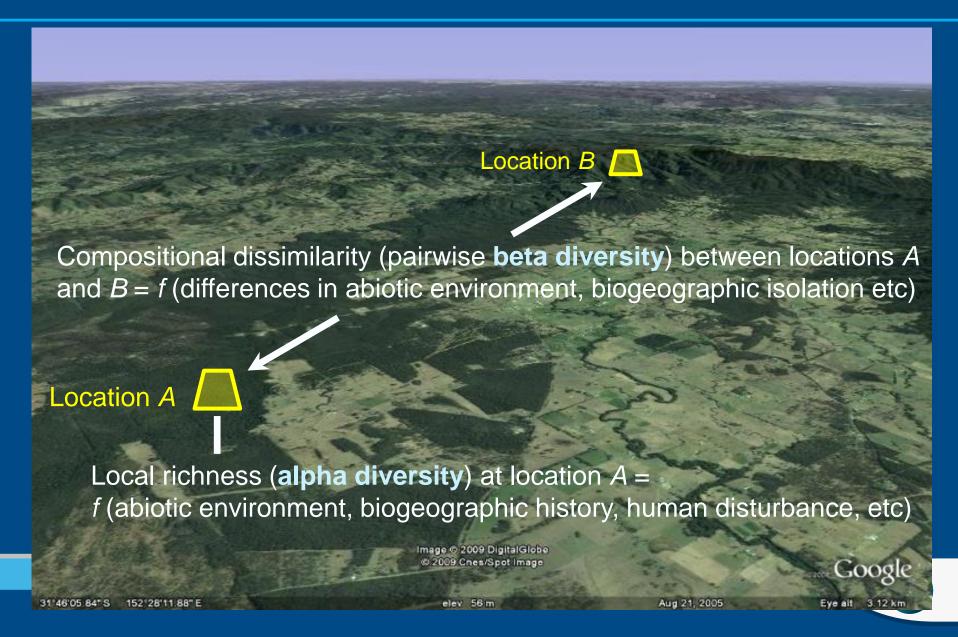


Broad approaches to monitoring biodiversity change

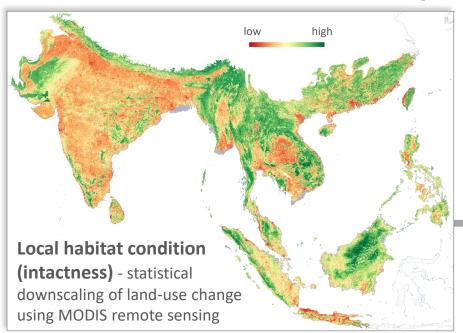




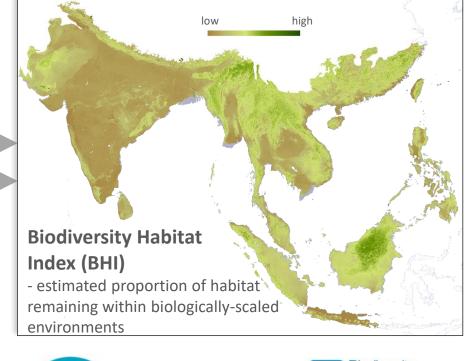
Modelling and mapping of continuous patterns in collective properties of biodiversity

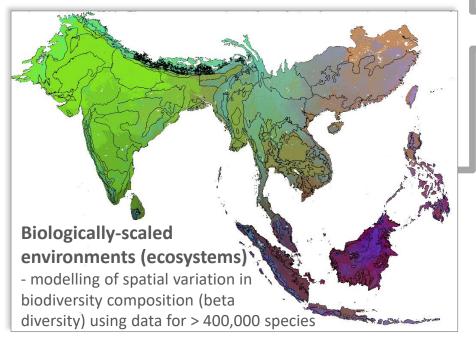


Biodiversity Habitat Index (BHI)

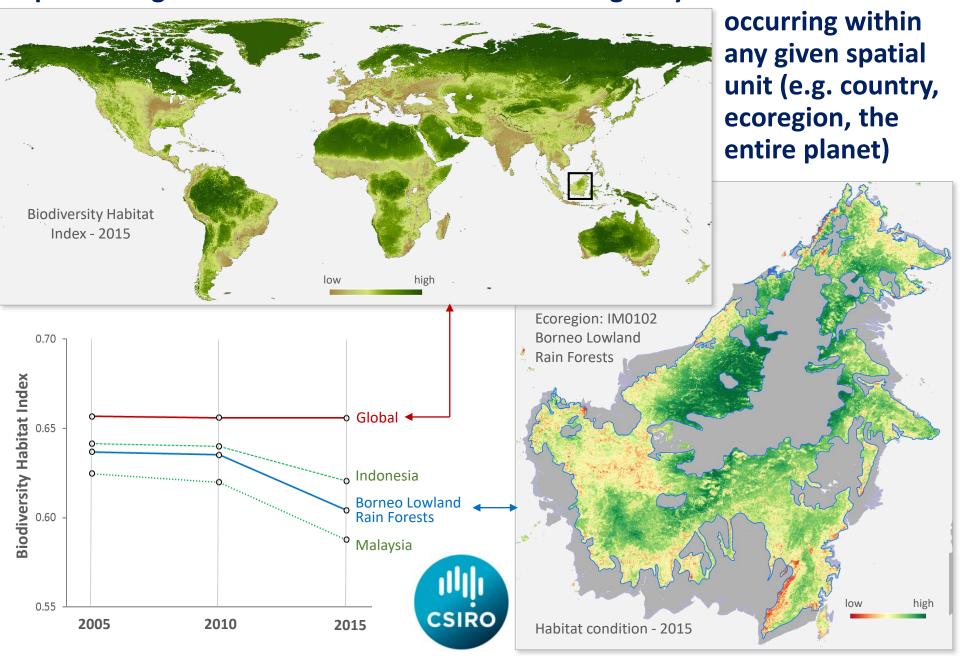


- Combines remotely monitored habitat condition with modelled spatial variation in biodiversity composition
- Derived at 1km grid resolution across the entire land surface of the planet

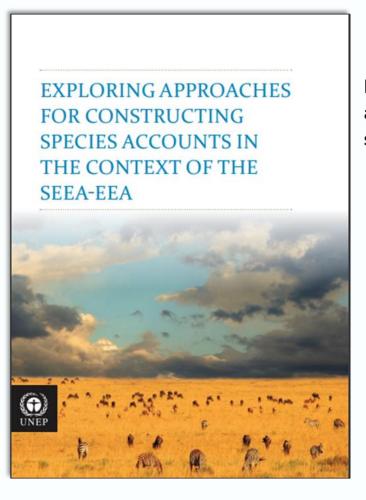


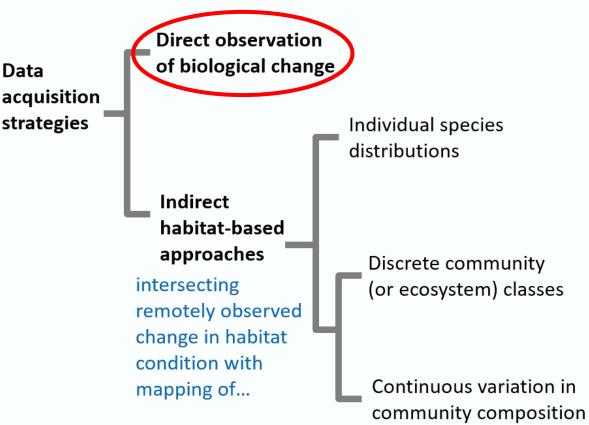


The BHI is recalculated, using remote-sensing inputs from different years, to report change in habitat retention across all biologically-scaled environments



Broad approaches to monitoring biodiversity change



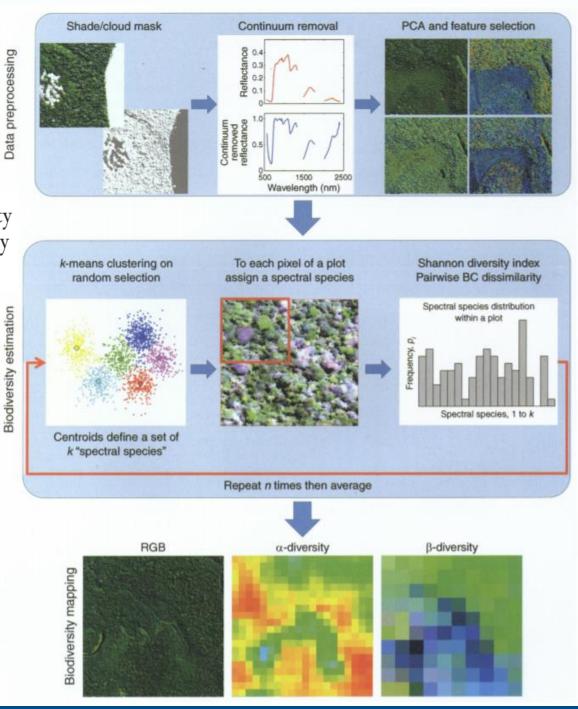


Data preprocessing

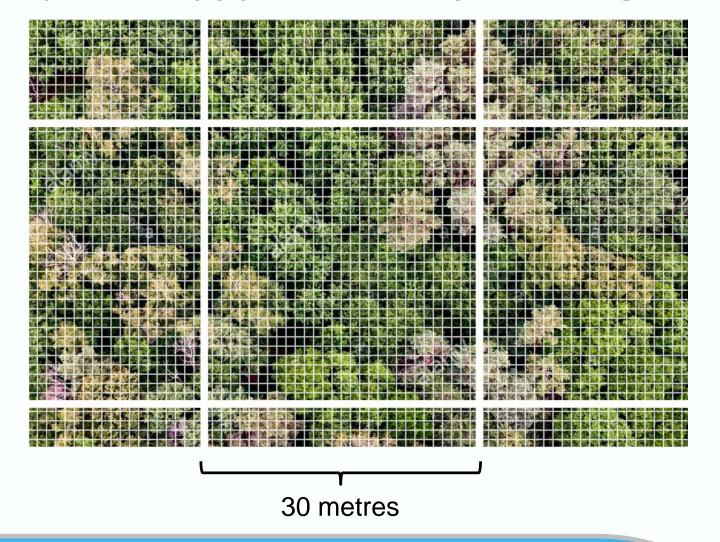
Ecological Applications, 24(6), 2014, pp. 1289–1296 © 2014 by the Ecological Society of America

Mapping tropical forest canopy diversity using high-fidelity imaging spectroscopy

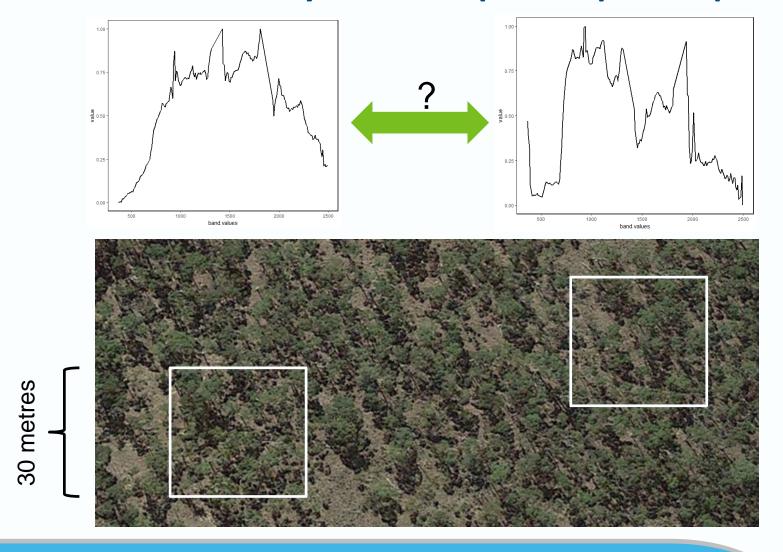
JEAN-BAPTISTE FÉRET¹ AND GREGORY P. ASNER



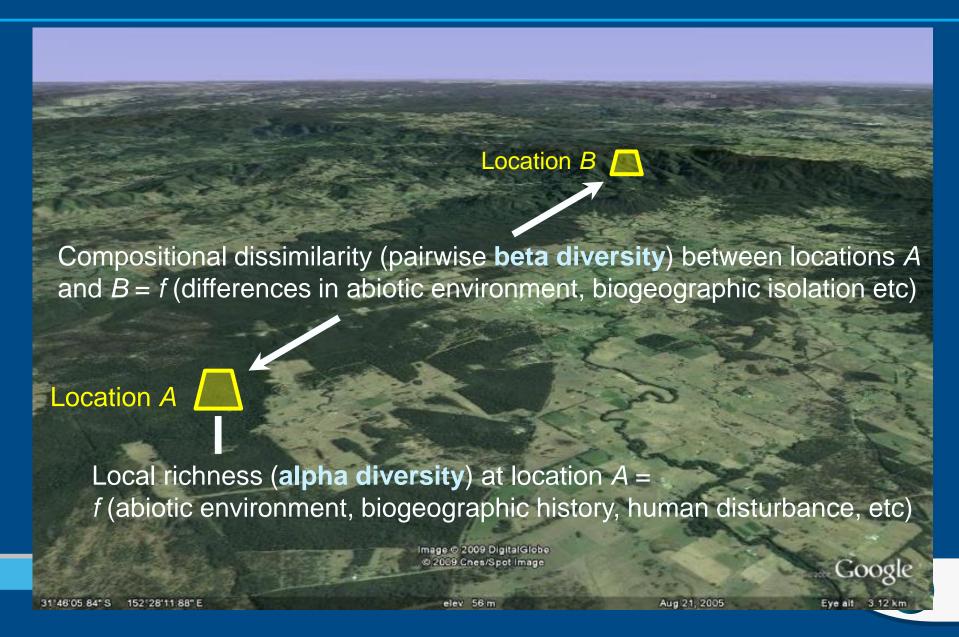
The coarser pixel resolution of spaceborne imaging spectroscopy presents a major challenge



Can pairwise beta-diversity (across space and/or time) be estimated directly from composite spectral profiles?

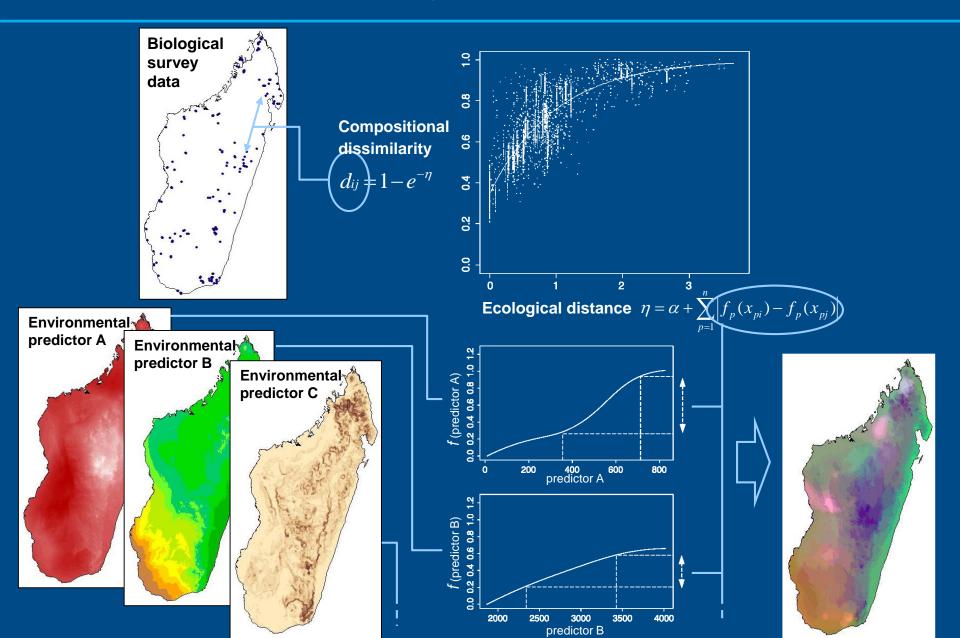


Modelling and mapping of continuous patterns in collective properties of biodiversity



Generalised dissimilarity modelling (GDM)

Ferrier, S et al (2007) Diversity & Distributions



IMPROVING BIODIVERSITY MONITORING USING SATELLITE REMOTE SENSING

Measuring β-diversity by remote sensing: A challenge for biodiversity monitoring

Duccio Rocchini ^{1,2,3} Sandra Luque ⁴ Nathalie Pettorelli ⁵ Lucy Bastin ⁶
Daniel Doktor Nicolò Faedi ^{3,8} Hannes Feilhauer Jean-Baptiste Féret
Giles M. Foody ¹⁰ Yoni Gavish ¹¹ Sergio Godinho ¹² William E. Kunin ¹³
Angela Lausch ⁷ Pedro J. Leitão ^{14,15} Matteo Marcantonio ¹⁶ Markus Neteler ¹⁷
Carlo Ricotta ¹⁸ Sebastian Schmidtlein ¹⁹ Petteri Vihervaara ²⁰
Martin Wegmann ²¹ Harini Nagendra ²²

1 Center Agriculture Food Environment, University of Trento, S. Michele all'Adige (TN), Italy: 2 Centre for Integrative Biology, University of Trento, Povo (TN), Italy; ³Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, Research and Innovation Centre, S. Michele all'Adige (TN), Italy; ⁴UMR-TETIS, IRSTEA Montpellier, Maison de la Télédétection, Montpellier Cedex 5, France; ⁵Institute of Zoology, The Zoological Society of London, London, UK; ⁶School of Computer Science, Aston University, Birmingham, UK: ⁷Department Computational Landscape Ecology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; "Department of Computer Science and Engineering, University of Bologna, Bologna, Italy; "Institut für Geographie Friedrich-Alexander, Universität Erlangen-Nürnberg, Erlangen, Germany; 10 School of Geography, University of Nottingham, Nottingham, UK; 11 School of Biology, Faculty of biological Science, University of Leeds, Leeds, UK; 13 Institute of Mediterranean Agricultural and Environmental Sciences (ICAAM), Universidade de Evora, Evora, Portugal; 13 School of Biology, University of Leeds, Leeds, UK; 34 Department Landscape Ecology and Environmental System Analysis, Technische Universität Braunschweig, Braunschweig, Germany; 18 Geography Department, Humboldt-Universität zu Berlin, Germany; 18 Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA; TI Mundialis GmbH & Co. KG, Bonn, Germany; TB Department of Environmental Biology, University of Rome "La Sapienza", Rome, Italy; 19 Karlsruher Institut für Technologie (KIT), Institut für Geographie und Geoökologie, Karlsruhe, Germany; 80 Natural Environment Centre, Finnish Environment Institute (SYKE), Helsinki, Finland; 21 Department of Remote Sensing, Remote Sensing and Biodiversity Research Group, University of Wuerzburg, Wuerzburg, Germany and 22 Azim Premji University, Bangalore, India

Correspondence

Duccio Rocchini Emails: ducciorocchini@gmail.com; duccio.rocchini@fmach.it

Present address

Lucy Bastin, Knowledge Management Unit, Joint Research Centre of the European Commission, Ispra, Italy

Handling Editor: Francesca Parrini

Abstract

- 1. Biodiversity includes multiscalar and multitemporal structures and processes, with different levels of functional organization, from genetic to ecosystemic levels. One of the mostly used methods to infer biodiversity is based on taxonomic approaches and community ecology theories. However, gathering extensive data in the field is difficult due to logistic problems, especially when aiming at modelling biodiversity changes in space and time, which assumes statistically sound sampling schemes. In this context, airborne or satellite remote sensing allows information to be gathered over wide areas in a reasonable time.
- 2. Most of the biodiversity maps obtained from remote sensing have been based on the inference of species richness by regression analysis. On the contrary, estimating compositional turnover (β-diversity) might add crucial information related to relative abundance of different species instead of just richness. Presently, few studies have addressed the measurement of species compositional turnover from space.
- 3. Extending on previous work, in this manuscript, we propose novel techniques to measure β -diversity from airborne or satellite remote sensing, mainly based on: (1) multivariate statistical analysis, (2) the spectral species concept, (3) self-organizing

Remote sensing data Biodiversity data **GDM SCCA** Community dissimilarity Canonical components GDM Beta-diversity map

Pedro Leitão's work

Methods in Ecology and Evolution

Methods in Ecology and Evolution 2015, 6, 764-771

doi: 10.1111/2041-210X.1237

Mapping beta diversity from space: Sparse Generalised Dissimilarity Modelling (SGDM) for analysing high-dimensional data

Pedro J. Leitão^{1,2*}, Marcel Schwieder¹, Stefan Suess¹, Inês Catry², Edward J. Milton³, Francisco Moreira², Patrick E. Osborne⁴, Manuel J. Pinto⁵, Sebastian van der Linden¹ and Patrick Hostert¹

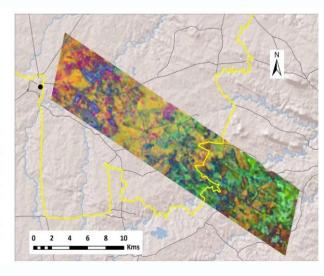


Fig. 3. Example of species compositional turnover mapping in the study area with Sparse Generalised Dissimilarity Modelling based on Landsat time series. The predicted dissimilarities between the sample plots were transformed with Non-metric Multi-Dimensional Scaling. The resulting three axes were applied to the image and visualised on the red, green and blue channels. Roads are represented by the grey lines, the limits of the Castro Verde Special Protection Area by the yellow line and the Castro Verde town by black circle.

Remote Sensing in Ecology and Conservation

ZSL LET'S WORK FOR WILDLIFE

ORIGINAL RESEARCH

Mapping woody plant community turnover with spaceborne hyperspectral data – a case study in the Cerrado

Pedro J. Leitão^{1,2} (i), Marcel Schwieder¹ (i), Fernando Pedroni³, Maryland Sanchez³, José R. R. Pinto⁴ (ii), Leandro Maracahipes⁵ (ii), Mercedes Bustamante⁶ (iii) & Patrick Hostert^{1,7} (iii)

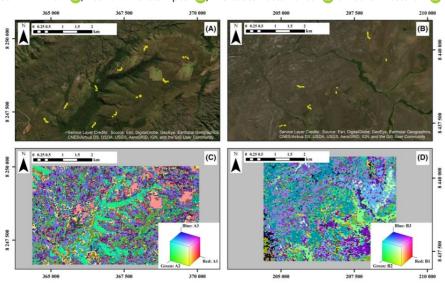


Figure 3. Above (in yellow) the location of the sampled pixels with a sample cover of at least 75% in PESA, Parque Estadual da Serra Azul (A) and PNCV, Parque Nacional da Chapada dos Veadeiros (B). Below, RGB maps of the main axes of variation in species turnover in PESA (C) and PNCV (D) woody plant communities. Each of the first three NMDS axes (A1 to A3 for PESA and B1 to B3 for PNCV) were, respectively, plotted in the R, G and B channels, so that, for example, a bright turquoise pixel would mean high loadings on axes 2 and 3 (high values on both the G and B channels).

Mapping Cerrado woody plant community turnover with spaceborne imaging spectroscopy data

Pedro J. Leitão,

Marcel Schwieder, Fernando Pedroni, Maryland Sanchez, José R. R. Pinto, Mercedes Bustamante, Patrick Hostert

Motivation & Aims:

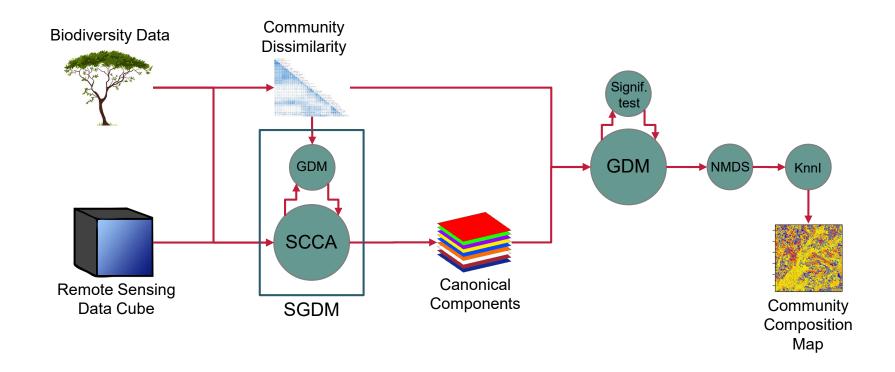
EnMAP Hyperspectral Imager

- Mapping and monitoring spatial patterns of community composition and turnover using spaceborne imaging spectroscopy
- Develop an operational method capable of dealing with high-dimensional and high-collinear remote sensing data

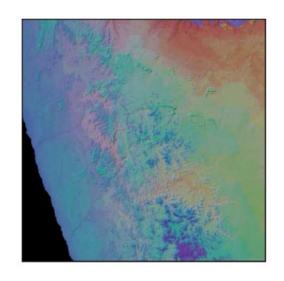


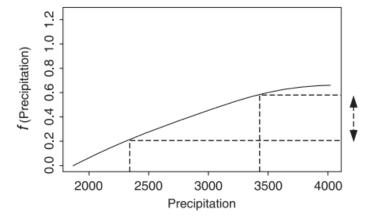
The EnMAP is one of several forthcoming spaceborne imaging spectroscopy missions

Sparse Generalized Dissimilarity Modelling (SGDM)

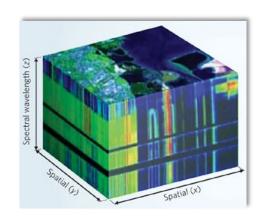


- Sparse Generalized Dissimilarity Modelling (SGDM)
 - Generalized Dissimilarity Modelling (GDM)
 - A statistical technique for analysing and predicting patterns of turnover in community composition
 - Fits non-linear functions on the environmental variables to predict compositional dissimilarity
 - Affected by data collinearity

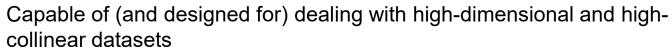




- Sparse Generalized Dissimilarity Modelling (SGDM)
 - Sparse Canonical Correlation Analysis (SCCA)



- Supervised transformation approach
- Used in genetic research, where typically number of features is much greater than number of samples
- Transforms two matrices in order to maximise the correlation between them
- Based on penalised (Lasso) regression, thus downweighting redundant data



Braunschweig

Sparse Generalized Dissimilarity Modelling (SGDM)

Methods in Ecology and Evolution

Methods in Ecology and Evolution 2015, 6, 764-771

doi: 10.1111/2041-210X.12378

Mapping beta diversity from space: Sparse Generalised Dissimilarity Modelling (SGDM) for analysing high-dimensional data

Pedro J. Leitão^{1,2*}, Marcel Schwieder¹, Stefan Suess¹, Inês Catry², Edward J. Milton³, Francisco Moreira², Patrick E. Osborne⁴, Manuel J. Pinto⁵, Sebastian van der Linden¹ and Patrick Hostert¹

2015, Description of the SGDM method

Communication

sgdm: An R Package for Performing Sparse Generalized Dissimilarity Modelling with Tools for gdm

Pedro J. Leitão *, Marcel Schwieder and Cornelius Senf

➤ 2017, Description of the sgdm R package

Remote Sensing in Ecology and Conservation

Open Acc

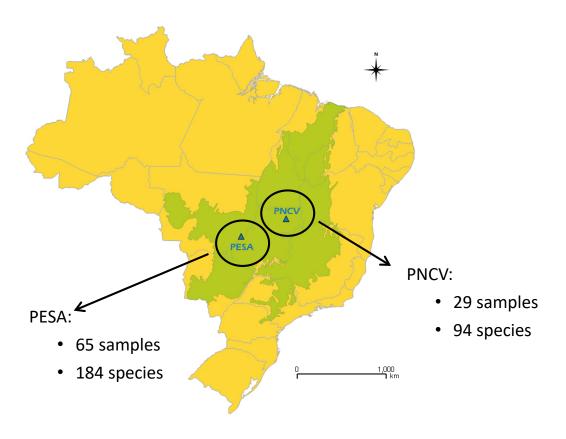
Mapping woody plant community turnover with spaceborne hyperspectral data – a case study in the Cerrado

Pedro J. Leitão^{1,2}*, Marcel Schwieder¹, Fernando Pedroni³, Maryland Sanchez³, José Roberto R. Pinto⁴, Leandro Maracahipes⁵, Mercedes Bustamante⁶ and Patrick Hostert^{1,7}

2018, Mapping Cerrado woody plant communities

Data:

 Woody plant inventory data following a systematic sampling scheme (RAPELD adapted to the Cerrado)



Floristic gradients

Data:

- Hyperion (hyperspectral) data
 - Pre-processing:
 - Radiometric correction
 - Correction for pixel shift, striping, keystone & smile
 - Atmospheric correction
 - Geometric correction
 - Spectral smoothing
 - Post-processing:
 - Data quality screening > 81 spectral bands remaining per image

esa

ECOSPHERE

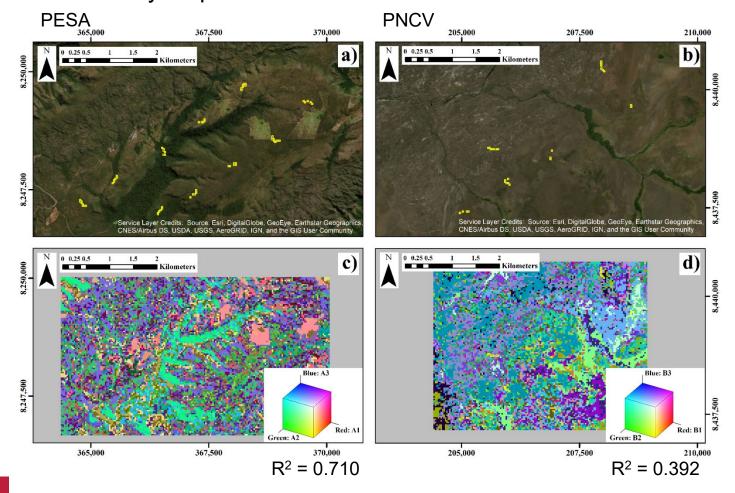
EMERGING TECHNOLOGIES

From sample to pixel: multi-scale remote sensing data for upscaling aboveground carbon data in heterogeneous landscapes

Pedro J. Leitão D, 1,2,† Marcel Schwieder, Florian Pötzschner, José R. R. Pinto, Ana M. C. Teixeira, Fernando Pedroni, Maryland Sanchez, Christian Rogass, Sebastian van der Linden, Recedes M. Bustamante, And Patrick Hostert, Mercedes M. Bustamante, And Patrick Hostert, Postert, Pos

Results:

Woody plant community maps



Results:

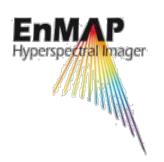
Spectral band contribution

PESA		PNCV	
Spectral band	Relative contribution	Spectral band	Relative contribution
620.15 (R)	4.229	569.27 (G)	4.039
701.55 (RE)	4.137	1517.83 (SWIR)	3.377
630.32 (R)	3.804	1507.73 (SWIR)	3.237
599.80 (G)	3.679	609.97 (R)	3.138
640.50 (R)	3.637	477.69 (B)	2.979
609.97 (G)	3.498	1568.22 (SWIR)	2.911
1285.76 (NIR)	3.442	1598.51 (SWIR)	2.821
732.07 (RE)	3.107	1235.27 (NIR)	2.711
650.67 (R)	2.939	579.45 (G)	2.664
589.62 (G)	2.642	467.52 (B)	2.629
1719.60 (SWIR)	2.544	1225.17 (NIR)	2.615
518.39 (G)	2.529	1003.30 (NIR)	2.570
498.04 (B)	2.503	1527.92 (SWIR)	2.509
579.45 (G)	2.376	589.62 (G)	2.042
1537.92 (SWIR)	2.343	874.53 (NIR)	1.928

Conclusions & Discussion

- Our method allowed for mapping species community turnover using spaceborne imaging spectroscopy
- Relevant considerations/challenges for the generalization of SGDM include:
 - The method is not suitable for data extrapolation (i.e. models need to include the full data space)
 - Input spectral data needs to be harmonized
 - It is sensitive to
 - Detection/correction of atmospheric effects
 - Topographic/shading effects
 - Phenological changes
 - Sensitivity to temporal or physiological changes needs to be tested





Thank you for your attention

p.leitao@tu-bs.de

@steppebird

Acknowledgements:

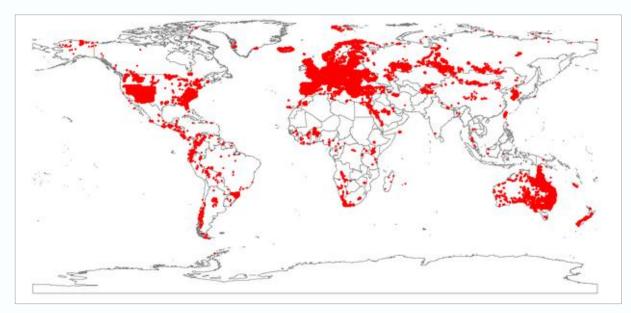
Ana Teixeira, Eddy Lenza, Christian Rogaß

This research was funded by the German Aerospace Centre - Project Management Agency (50EE0949; 50EE1309)

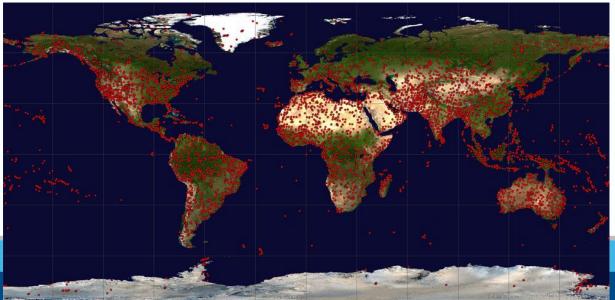
Where to from here? – strategies for accessing or generating data to further test and develop ideas

- Combine existing spaceborne hyperspectral data (e.g. Hyperion archive) and coincident existing vegetation plot data (e.g. sPlot database)
- ➤ Simulate spaceborne hyperspectral data by aggregating existing airborne data (e.g. AVIRIS) across areas with existing vegetation plot data
- Commission spaceborne data (e.g. DESIS) across areas with existing vegetation plot data
- Collect new vegetation plot data across areas with good spaceborne and/or airborne hyperspectral data coverage

Over 93,000 of the 1.12 million vegetation plots in the sPlot database fall within Hyperion scenes



German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig



EO-1 Hyperion: archive scenes

Where to from here? – strategies for accessing or generating data to further test and develop ideas

- Combine existing spaceborne hyperspectral data (e.g. Hyperion archive) and coincident existing vegetation plot data (e.g. sPlot database)
- ➤ Simulate spaceborne hyperspectral data by aggregating existing airborne data (e.g. AVIRIS) across areas with existing vegetation plot data
- Commission spaceborne data (e.g. DESIS) across areas with existing vegetation plot data
- Collect new vegetation plot data across areas with good spaceborne and/or airborne hyperspectral data coverage

Where to from here? – numerous challenges in refining and extending the analytical approach – for example ...

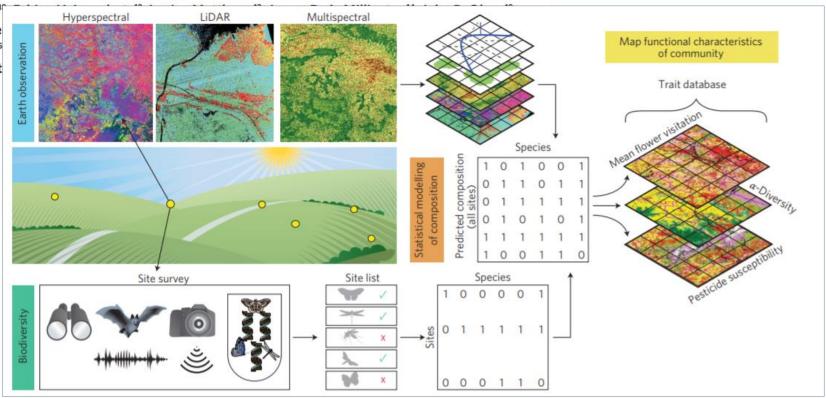
- ➤ Accommodating shorter-term temporal dynamics (seasonality, drought, fire etc)
- Disentangling natural and anthropogenic drivers of variation in community composition
- Coupling spaceborne imaging spectroscopy with other cutting-edge observation technologies – e.g. eDNA / metabarcoding / metagenomics

PUBLISHED: 22 JUNE 2017 | VOLUME: 1 | ARTICLE NUMBER: 0176

Connecting Earth observation to high-throughput biodiversity data

Alex Bush^{1,2,3}, Rahel Sollmann⁴, Andreas Wilting⁵, Kristine Bohmann^{6,7}, Beth Cole⁸, Heiko Balzter^{8,9}, Christopher Martius¹⁰, András Zlinszky¹¹, Sébastien Calvignac-Spencer¹², Christina A. Cobbold¹³, Terence P. Dawson¹⁴, Brent C. Emerson^{15,7}, Simon Ferrier³, M. Thomas P. Gilbert^{6,16}, Martin Herold¹⁷,

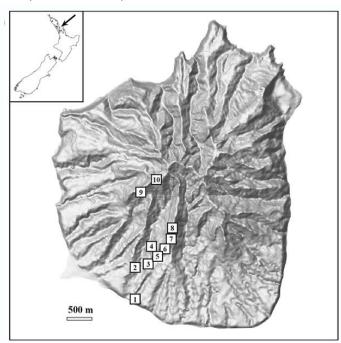
Laurence Jones¹ Otso Ovaskaine Stewart Snape²⁵ Martin J. Woost



RESEARCH Open Access

Evaluating a multigene environmental DNA approach for biodiversity assessment

Alexei J. Drummond^{1,2*}, Richard D. Newcomb^{1,3,4}, Thomas R. Buckley^{1,3,5}, Dong Xie^{1,2}, Andrew Dopheide^{1,3,4}, Benjamin CM Potter^{1,3}, Joseph Heled^{1,2}, Howard A. Ross^{1,3}, Leah Tooman^{1,4}, Stefanie Grosser^{1,5}, Duckchul Park⁵, Nicholas J. Demetras⁸, Mark I. Stevens^{6,7}, James C. Russell^{1,3,9}, Sandra H. Anderson³, Anna Carter^{1,10} and Nicola Nelson^{1,10}



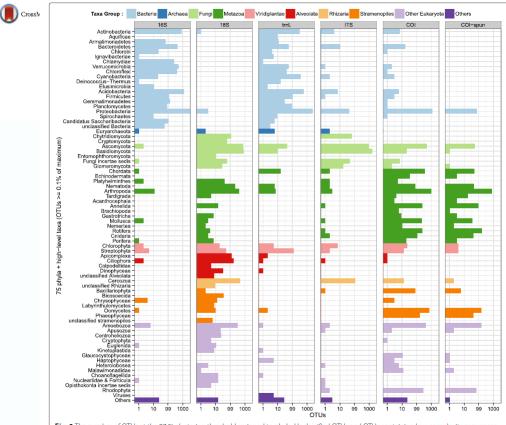
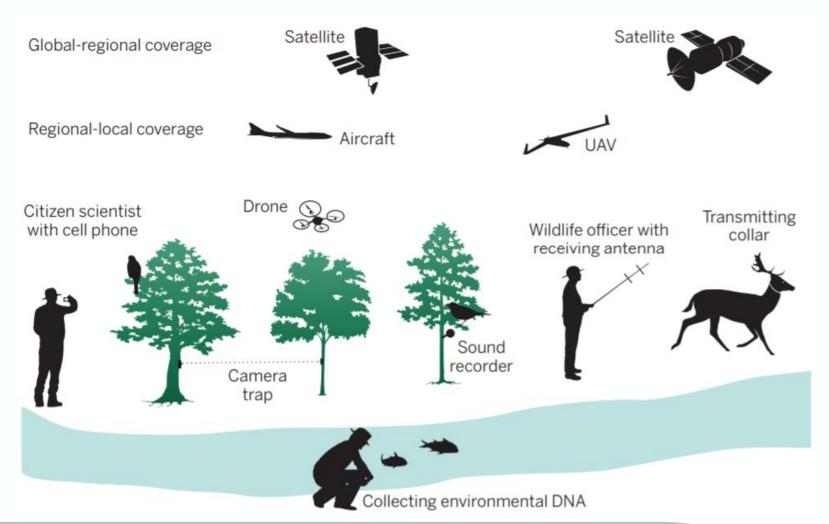


Fig. 3 The number of OTUs at the 97 % clustering threshold assigned to phyla. Unclassified OTUs and OTUs containing low-complexity sequences are not included, OTUs from phyla that are represented by less than 0.1 % of the OTUs are grouped into the 'Others' category

Sensing biodiversity

Turner, W (2014) Science

Sophisticated networks are required to make the best use of biodiversity data from satellites and in situ sensors



Thank you

CSIRO Land and Water

Simon Ferrier

- t +61 2 62464191
- e simon.ferrier@csiro.au
- w www.csiro.au

CSIRO LAND & WATER

www.csiro.au

