

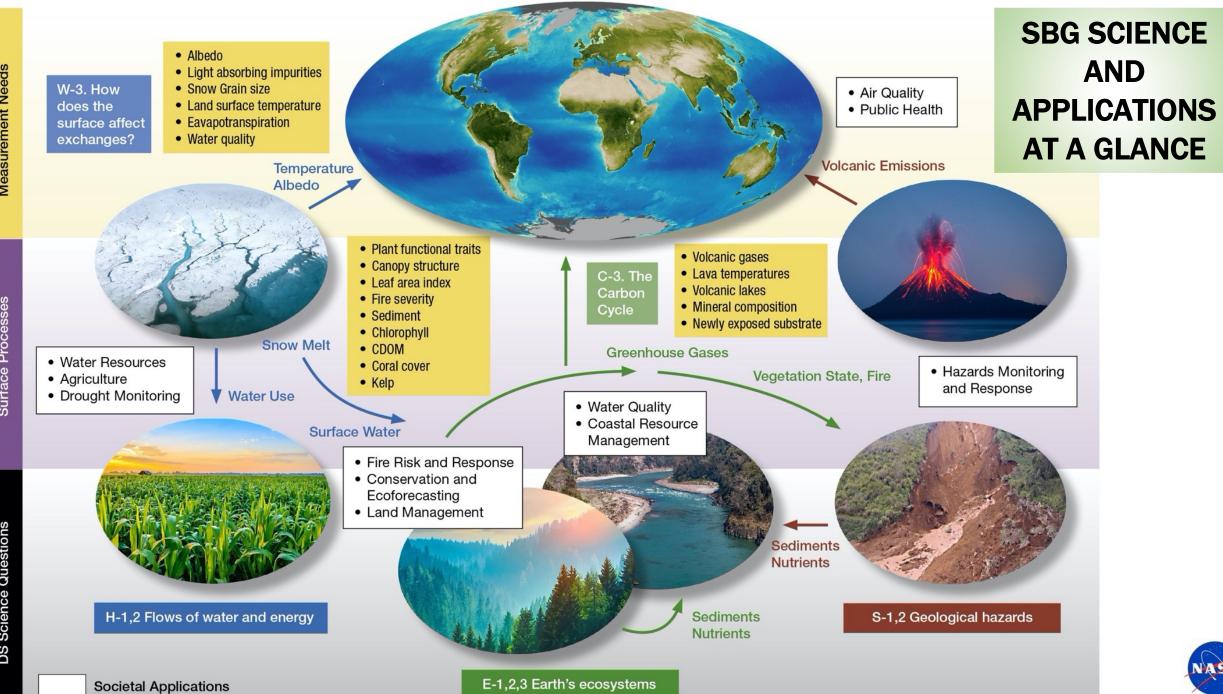
8th SBG Community Webinar

Dave Schimel, Christine Lee, Jeff Luvall, Stephanie Uz and the SBG team Jet Propulsion Laboratory, California Institute for Technology

> © 2022 California Institute of Technology. Jet Propulsion Laboratory, California Institute of Technology. Government sponsorship acknowledged.

THE SURFACE BIOLOGY AND GEOLOGY DO IS DEFINED WITH CONSIDERABLE DETAIL IN THE DECADAL SURVEY

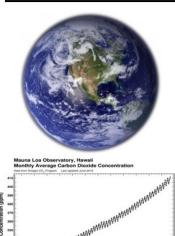
SBG is key to understanding in five research and applications focus areas:

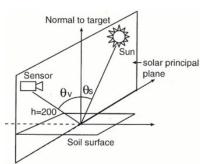

- Terrestrial and aquatic ecosystems
- Hydrology
- Weather
- Climate
- Solid Earth

The Decadal Survey defines the implementation as two sensors "Hyperspectral imagery in the visible and shortwave infrared; multi- or hyperspectral imagery in the thermal IR":

- "....a moderate spatial resolution (30-45 m GSD), hyperspectral resolution (10 nm; 400-2500 nm), high fidelity (SNR = 400:1 VNIR/250:1 SWIR) imaging spectrometer is needed for characterizing land, inland aquatic, coastal zone, and shallow coral reef ecosystems"
- "....30-60 m TIR observations in the 10.5-11.5 μm and 11.5-12.5 μm spectral regions are needed with a 2-4 day revisit frequency" ¹

1) Note, this specification was updated based on recent work and community engagement to optimize for the DS-specified science and applications.

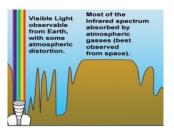




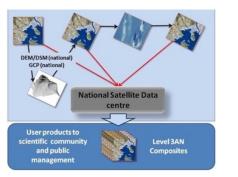
Measurement Needs

Surface Processes

SBG: KEY RESEARCH AND APPLICATIONS REQUIREMENTS

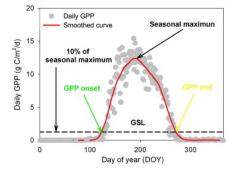


COVERAGE: The system must provide **global coverage** to address the global scope of the science including the coastal ocean and inland waters.


STABILITY AND DURATION:

Measurements must be able to detect **long term changes** for addressing dynamics of the Earth System.

GEOMETRY: The system's orbit must allow for **consistent sun-sensor geometry** for consistency in retrievals and for calibration and validation, and provide for global coverage, as above (polar orbit).



RANGE, RESOLUTION AND SENSITIVITY: Visible to Shortwave Infrared (VSWIR; 400-2500 nm) imaging spectroscopy and multi-spectral thermal infrared (TIR; 4 - 12 μ m) measurements to observe "diversity" in ecosystem function. Radiometric performance driven by aquatic targets.

LATENCY: Low latency, the time between an event and data access, must be low enough to support time-sensitive applications, \leq 24 hours.

SPATIAL RESOLUTION: The observing system must provide **high spatial resolution** (30 and 60 m for VSWIR and TIR)

REVISIT: The SBG observing system

temporal resolution must be adequate

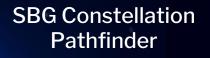
variation as well as observe rapid or

system events such as fires, landslides,

to capture synoptic and seasonal

transient changes related to Earth

volcanic activity and anthropogenic


incidents.

SBG Architecture

SBG Heat Wide-swath TIR imager and ASI VNIR camera

Sun-sync orbit (early PM) 5+ bands TIR, 2+ bands VNIR 935 km swath, 3 day revisit 60 meter GSD 0.2K NeDT

185 km

935 km

SBG Light Wide-swath VSWIR spectrometer

Sun-sync orbit (late AM) 185 km swath 16 day revisit 10 nm, 200+ bands 30 meter GSD High SNR and radiometric performance ~5 deg off-nadir tilt

EARTH SYSTEM OBSERVATORY

CCP

- autitut with

SURFACE BIOLOGY AND GEOLOGY

Earth Surface & Ecosystems CLOUDS, CONVECTION AND PRECIPITATION

Water and Energy in the Atmosphere

AEROSOLS

Particles in the Atmosphere

SURFACE DEFORMATION AND CHANGE

Earth Surface Dynamics

MASS CHANGE

Large-scale Mass Redistribution

Credit: nasa.gov

SBG WILL DELIVER MAJOR APPLIED SCIENCE ACROSS SECTORS

AGRICULTURE, FOOD SECURITY AND SURFACE WATER MANAGEMENT

Improve "crop per drop" by assessing vegetation water stress over irrigated agriculture

Improve water supply management through better characterization of snow properties and estimated reservoir inflows

Reduce the impacts of drought, such as crop loss and famine, on global scales

WATER QUALITY AND COASTAL ZONES

Support early detection of and response to harmful algal bloom formation

Protect sensitive aquatic habitats by monitoring/reducing water pollutant loading, particular in coral reefs and other sensitive ecosystems

Water surface temperature and impacts on marine biodiversity

CONSERVATION

Support biodiversity understanding and protections by mapping invasive species composition, structure, distribution; support removal and restoration efforts

Monitoring of endangered species habitat; provide alerts of disease mortality of impacted vegetation, including insect infestation

Biodiversity hotspots and priority conservation areas, 30 x 30 plans

WILDFIRE RISK AND RECOVERY

Fuel mapping (cover type, extent, status) for wildfire danger management

Post fire severity assessment and recovery, including prediction of areas with higher likelihood of debris flows

DISASTERS AND NATURAL HAZARDS

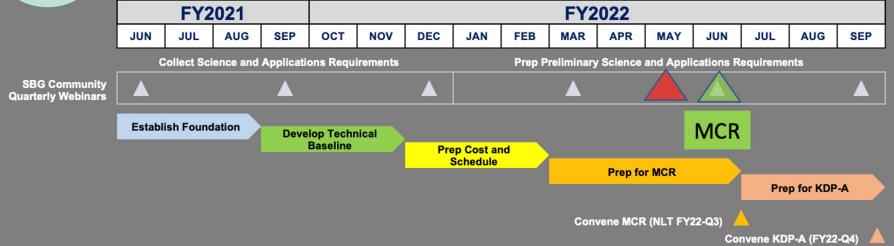
Detect and track oil spill events and

Support active fire mapping and response

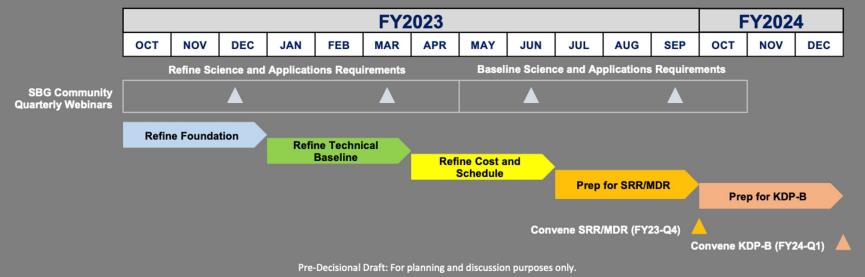
Improve mitigation of heat wave events for vulnerable populations

GEOLOGY APPLICATIONS

Mineral mapping for exploration efforts and reduction of environmental hazards

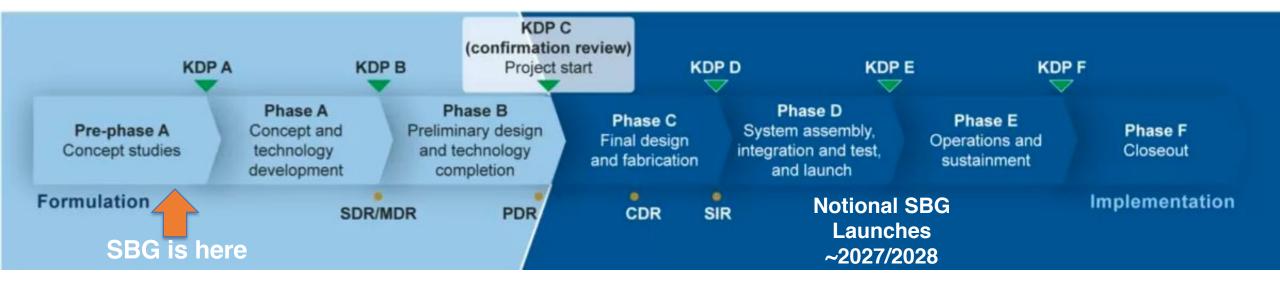

Forecast aviation hazards and support emergency response for volcanic eruptions

Landslide risk assessment with improved substrate map land cover maps



Surface Biology and Geology (SBG)

Pre-Phase A (Pre-Concept Study Phase) Schedule


Phase A (Concept Study Phase) Schedule - Notional

© 2021 California Institute of Technology. Jet Propulsion Laboratory, California Institute of Technology. Government sponsorship acknowledged.

NASA Project Lifecycle

SBG Applications Overview

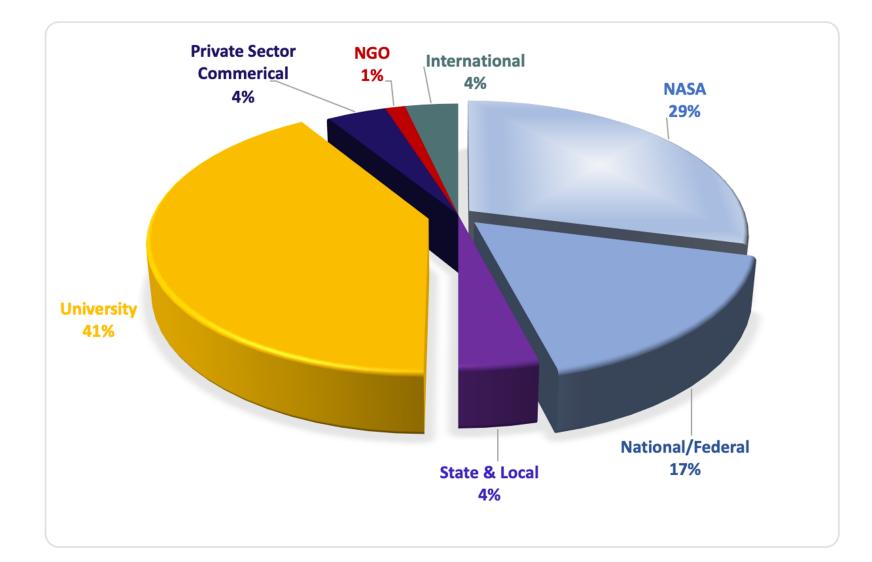
- SBG study structure and the role of applications
- Assessment of SBG applications community
- Impact of applications in SBG missions architecture
- Next steps

SBG Applications Working Group Charter

The Applications Working Group will recruit, coordinate and integrate input on applications needs, data product requirements and training/education and other needs:

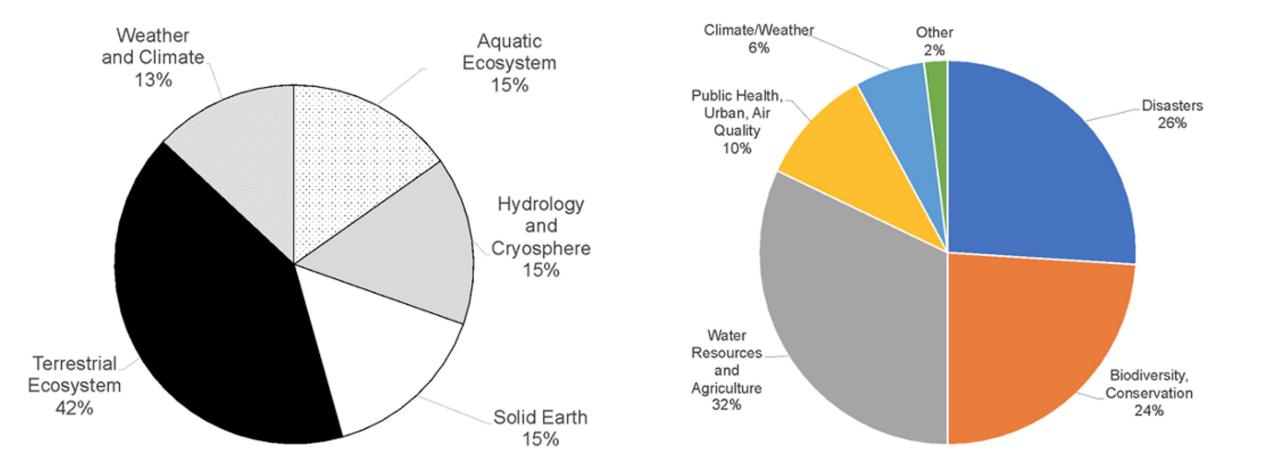
- Identify key applications requirements, latency, revisit, specific products.
- Cultivate stakeholders and end users via joint activities, workshops, thematic working groups, and design and dissemination of tailored SBG data products.
- Characterize the SBG Communities of Practice and Potential and produce a SBG Community Assessment Report.

SBG Applications Working Group Activities


Working Group (~225 members) Activities

- Monthly meetings (30-50 attendees)
 - Interface and engage community
 - Feature SBG relevant applications
 - Obtain community feedback on specific topics (e.g., develop ATM, training needs) for mission planning

Sector participation in the SBG Applications Working Group. As of May 2022, there are approximately 225 participants.


SBG Applications Traceability Matrix and Summary

	Decada I Surv	ey Science Topics, Questions, O	bjectives, and	d Geophysical Observables				S	BG Example (e ophysical V	ariables and	Capabilities					
Topic	DS Science Question	DS Science/Application Objective	Priofity	DS Suggested Biogeophysical Parameters	Key SBG Geophysical Parameters	VS WIR S patial	VSWIR Temporal	VSWIR Range	VSWIR Sensitivity	TIR Spatial	TIR Temporal	TIR Range	TIR Sensitivity	VSWIR/TIR Coin cide nce	References	Enabled Applications * = With 48 hr Latency	DO Synergies
					VSWIR Spectral surface reflectance	≤60 m	≤8 days for global coverage*	≤380 - ≥2500 nm, @ ≤10nm							R2, R3, R7, R8, R14, R27, R28	EA3, EA8*, EA9, some E1-a. applications.	A-CCP
Global	H-2. How do anthropogenic changes in dimate, land use, water use, and water storage,	H-2a. Quantify how changes in land use, water use, and water storage affect		Latent heat flux: 3 (desirable) to 6 hour (useful) resolution during daytime intervals and at 1 km spatial scale with better than 10 W/m2 accuracy. Requires temperature of soil and	TIR emissivity					<60 m	≤3 days for global coverage*		≤1K Absolue, ≤0.2K NeDT / band		R4, R5, R8, R27	EA8*, EA14*, EA 30*	A-CCP
Hydrological Cycles and Water Resources	interact and modify the water and energy cycles locally, regionally and globally and what are the short- and long-term consequences?	e vapotranspiration rates, and how these in turn affect local and regional precipitation systems, groundwater we charge, temperature extremes, and carbon cycling.	Very Important	vegetation separatel y at 40-100m spatial resolution, accuracy of +/- 1X, at temporal frequency to resolve the diumal cycle. Albedo of soil and vegetation separately to an accuracy to estimate absorption of solar radiation to 10 W/m2, at weekly intervals at field scale, 30-60m spatial resolution.	Evapotra repiration rates of vegetation canopies with 10% uncertainty (multiple times of day)	≤30 m		VNIR multiband		60-100 m	≤3 days for global coverage*	≥5 bands in 8-12 um	≤1K Absolue, ≤0.2K NeDT / band	On same day	R4, R5, R8, R13, R23, R27, R32, R36	EA3, EA7*, EA12, EA13, EA23	A-CCP
					Surface temperature (multiple times of day)					<60 m	≤3 days for global coverage*	≥5 bands in 8-12 um	≤1K Absolue, ≤0.2K NeDT / band		R4, R5, R8, R27	EA8*, EA12, EA13, EA14*, EA30*	A-CCP
Marine and Terrestrial	E-1. Ecosystem Structure, Function, and Biodiversity. What are the structure, function,	E-1a. Quantify the global distribution of the functional traits, functional types, and	Very	Chemical properties of vegetation, aquatic biomass, and soils. (Land, inland aquatic, costal zone, and shallow coral reef):	Biogeochemical traits of aquatic biomass, including ocean color pigmentation and productivity (coastal)	≤30 m	≤16 days for global coverage*	В*	SNR ≥400 VNIR, SNR ≥250 SWIR, accuracy ≤10%						R17, R8, R41, R42, R43	EA27, EA28*, EA29*, EA43	
Ecosystems and Natura I Resource Management	and biodiversity of Earth's ecosystems, and how and why are they changing in time and space?	composition of vegetation spatially and over time; E-Lc. Quantify the physiological dynamics of terrestrial and aquatic primary producers.	Important, Most Important	Spectral radia nce (10nm; 380-2500nm); GSD = 30-45m; Revisit = ~15 days; SNR = 400:1 VNIR/250:1 SWIR @ 25% reflecta nce; IT of ~5 ms.	Terrestrial Veg. functional traits, types, composition	≲30 m	≤16 days for global coverage*	≤380 - ≥2500 nm, @ ≤10nm	SNR ≥400 VNIR, SNR ≥250 SWIR, accuracy ≤10%						R3, R8, R10, R16	EA9, EA10, EA11, EA15, EA16, EA17, EA18, EA19*, EA20, EA21, EA22, EA24, EA31*, EA33, EA34, EA35, EA43, EA45, EA46	
				Ground-surface composition and changes over time. Hyperspectral VNIR/SWIR (at the ~ 30 m spatial scale) and TIR data (at the ~ 60 m spatial scale) with 1-2 week revisit time,	Land surface temperature (active volcanoes)	≤30 m	≤16 days for global coverage*	≤380 - ≥2500 nm, @ ≤10nm		60-100 m	≤5 days for global coverage*			VNIR within 3 days	R6	EA42, EA30*	
Earth Surface and Interior	S-1. How can large-scale geological hazards be accurately forecast in a socially relevant	S-1a. Measure the pre-, syn-, and posteruption surface deformation and products of Earth's entire active land	Most	acta jat the "our spatial scale with 1-2 week revisit time, acquiring continuously for periods of weeks to months prior to an eruption to detect trends and change	Fractional coverage and silicate composition of lava flows, lahars, ash deposits (active volcanoes)	≤30 m	≤16 days for global coverage*	≤380 - ≥2500 nm, @ ≤10nm		60-100 m	≤5 days for global coverage*	≥5 bands in 8-12 um		VNIR within 3 days	R8, R15	EA36*, EA38*, EA39, EA42	
	time frame?	volcano inventory with a time scale of days to weeks.	and provided the	Gas emissions, plume composition, particle size and temporal changes (high spatial resolution). Multi- to hyperspectral VNIR/SWIR (at ~30 m) and TIR data (at ~60 m) with ~1 week revisit time. Acquiring continuously prior to and during eruptions to detect trends and measure eruptive emissions.	Gas and particle concentrations (active volcances)	≤30 m	s8 days for global coverage*	≤380- ≥2500 nm, @ ≤10nm	SNR ≥400 VNIR, SNR ≥250 S WIR, accuracy ≤10%	60-100 m	≲5 days for global coverage*	≥5 bands in 8-12 um		VNIR within 3 days		EA37* EA41, EA42	

SBG Applications Areas

SBG Applications – Latency Analysis

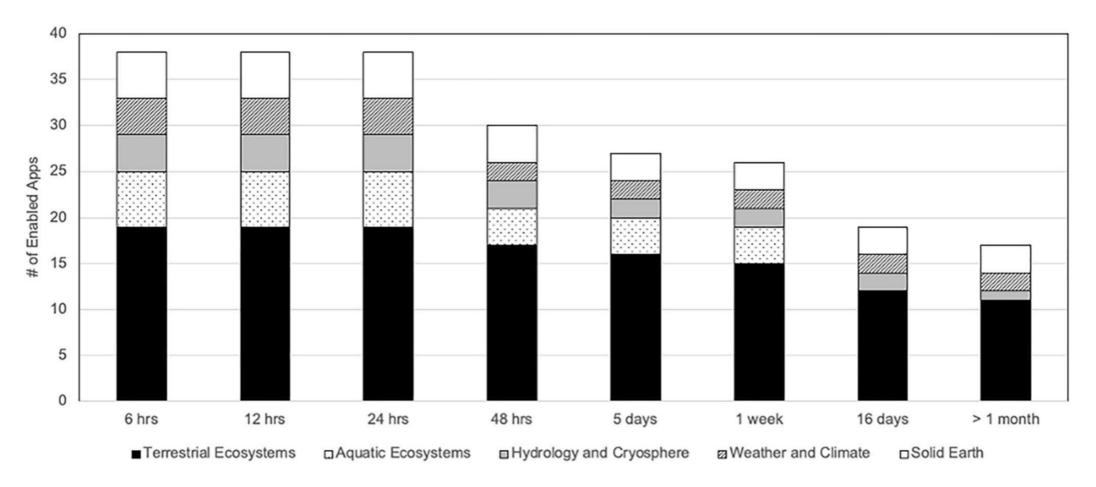
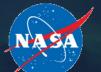
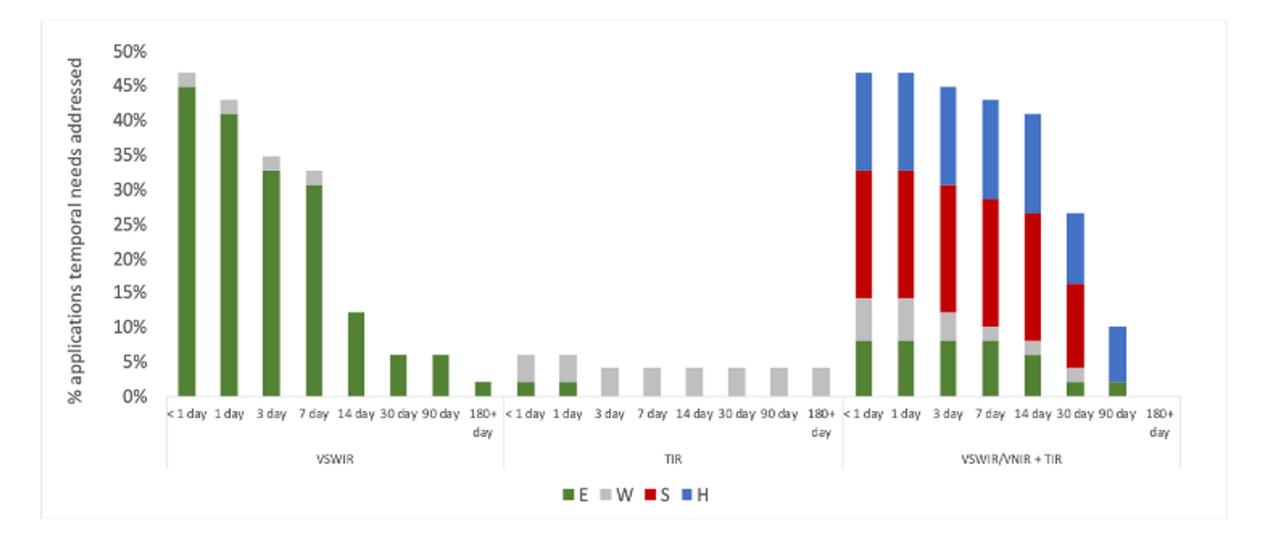




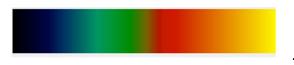
Figure 2. 24 hour latency (acquisition to L2+) would enable 78% of applications possible with the current capability set ((Stavros et al., 2022)), which is the maximum possible in the current configuration.

SBG Applications – Temporal Analysis

Many applications needed both better revisit from VSWIR (<16 day - SBG) and would benefit from better revisit from TIR+VNIR (< 3 day)

SBG – Latency and Applications

	Ecosystems	Solid Earth	Hydrology & Cryosphere	Weather & Air Quality
Event- driven (<6 hrs)	 Support active fire mapping and response Detect and track oil spill events 	 Active volcanic eruptions, resulting in evacuations Forecast aviation hazards associated with volcanoes 	Detecting and monitoring flood, including extent and impacts	Tracking and reporting on extreme weather events and impacts
24-48 hours	 Early detection of and response to algal blooms Marine heat waves / coral bleaching Continue monitoring oil spills and fires 	 Continued monitoring of active volcano, landslide, debris flow events 	 Water use for agriculture (irrigation needs) Continued flood monitoring Snow conditions 	 Improve mitigation of heat wave events, urban heat island Air quality emissions (fires, gas leaks, dust)
Weeks to months	 Post fire severity assessment / recovery Biodiversity for conservation, and restoration Fisheries Carbon accounting 	 Landslide and debris flow risk assessment Mineral resource mapping 	 Food security and Aid Distribution Flash drought detection and monitoring Agricultural runoff Agriculture disease and runoff 	 GHG emissions from land conversion Chronic air quality concerns and environmental justice Vectorborne disease habitat



Key Application Driver: A 24 hour latency (acquisition to L2+) would enable 78% of applications possible with the current capability set ((Stavros et al., n.d.)), which is the maximum possible in the current configuration

Key Application Driver: A < 1 day revisit of both VSWIR with TIR/VNIR satisfied the greatest number (76%) of the 49 enabled applications' temporal needs.

Key Application Driver: Inclusion of a Visible Near InfraRed camera (VNIR) with the TIR platform for coincident albedo/thermal measurements – largely to improve evapotranspiration estimates.

Key Application Driver: The addition of a 4 um channel to support the high temperature characterization of fires and volcanoes

SBG User Needs and Valuation Study

Project Team

RTI Innovation Advisors

Karen Yuen, Nancy Glenn

Snyder, Crista Straub, and Zhuoting Wu.

Tom Culver, Amy Rydeen, Molly Dix, Meghan Camello

Michael Gallaher, Daniel Lapidus, Elizabeth Brown

RTI Center for Applied Economics and Strategy

Christine Lee, Jeffrey Luvall, Natasha Stavros, Stephanie Uz

The project team would like to acknowledge the vital contributions of

from industry, NASA, NOAA, USGS and specifically Pamela Blake, Kerry

<u>Cawse-</u>Nicholson, Stephanie Granger, Christopher Hain, Glynn <u>Hulley</u>, Raymond <u>Kokaly</u>, Ryan Pavlick, Blake Schaeffer, David <u>Schimel, Gregory</u>

varied stakeholders including, but not limited to participants and advisors

NASA Surface Biology and Geology DO Applications Team

Final Report, September 2020 NASA HQ Contract No. 1641916

Prepared by RTI International 3040 E. Cornwallis Road Post Office Box 12194 Research Triangle Park, NC 27709-2194

RTI Innovation Advisors

A fundamental aspect of the user studies was to engage private-sector, nongovernmental organization (NGO), and local municipal EO users not traditionally engaged by NASA for science mission planning.

Categorically identifying and engaging this type of nontraditional user was paramount to successfully studying their needs.

SBG User Needs and Valuation Study

Final Report, December 2021 NASA HQ Contract No. 1659536 and Subcontract Unilateral Modification No. 1

Prepared by RTI International 3040 E. Cornwallis Road Post Office Box 12194 Research Triangle Park, NC 27709-2194

RTI Innovatic Project Team

RTI Innovation Advisors Tom Culver, Amy Rydeen, Molly Dix, Kristina Cooley, Haley Harrison

RTI Center for Applied Economics and Strategy Michael Gallaher, Daniel Lapidus, Elizabeth Brown

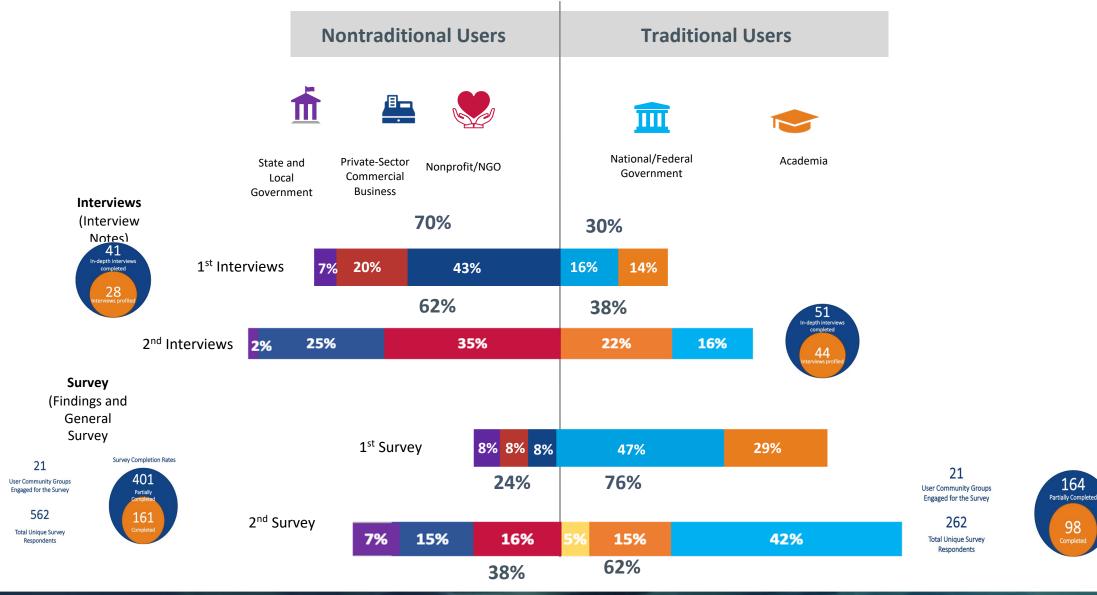
NASA Surface Biology and Geology DO & Applications Team Christine Lee, Jeffrey Luvall, Stephanie Schollaert Uz, Karen Yuen, Nancy Glenn, Dave Schimel, Ben Poulter, Chris Hain

The project team would like to acknowledge the vital contributions of varied stakeholders including but not limited to participants and advisors from industry, NASA, NOAA, USAID, USDA, USGS, and specifically Glynn Hulley, Vince Realmuto, Michelle Gierach, Liane Guild, Alan Li, Everett Hinkley, Jim Ellenwood, Martha Anderson, Prasad Thenkabail, Chris Justice, Chris Funk, and Jim Verdin.

A special thanks to Gary Geller, Senior Science Systems Engineer, NASA JPL, CIT for his extensive support on the conservation and biodiversity research.

SBG applications community assessment (RTI)

Summary of areas surveyed / studied


Primary Application and Other Communities Studied

- 560+ individuals surveyed regarding SBG capability needs
- 94 interviews in total across all 11 thematic areas
- SBG will be able to provide benefit to most application areas studied when considering spatial and temporal decision scales

User Communities Sampled

RTI study and CAR can be used to inform a community engagement plan and materials

Community Readiness

Mature, resourced coordination among coalitions; active EO value chains/VASPs; shared vision and development of RS needs; coordinated capacity building.

Established coalitions, subcommunities; limited EO value chains/VASPs; shared use of common observation/RS data; isolated capacity building

Evolving coordination of subcommunities, shared vision of primary challenges, little shared resources; emerging EO value chain and limited collaboration on observations and use of RS; limited capacity building.

Different subcommunities working separately on different aspects of application area; no EO value chain/VASPs, no shared use of RS

Agriculture / water resources

	Key Use Cases of SBG Data/Products		Nat	tional	Re	egional	Field	Plant
-	Ag and Water resource							
1 Alexandre	Drought Monitoring							
_	Crop type/composition/healthy monitoring							
Agriculture	Crop residue/monitoring							
	Food security/yield forecasting							
		Ann	ual					
×.	Key Use Cases of SBG Data/Products	Sease	onal	Mont	hly	Biweekk	Weekly	Daily
	Ag and Water resource							
	Drought Monitoring							
Agriculture	Crop type/composition/healthy monitoring							
	Crop residue/monitoring							
	Food security/yield forecasting							

Observations and impacts

- Input into SBG project: With the shift to precision farming and practice, users need precise and timely data, and more advanced monitoring and models. Temporal resolution is as important as spatial and near daily monitoring is desired.
- For U.S. farmers who use Variable Rate Technology (VRT), SBG may provide an increase of greater than \$30M annually through improved revenue and savings, where a conservative estimate is 10-20% increase over current profits while using VRT.

Expert Interview Quotes:

"If we can build field-scale maps and models for monitoring crop type, growth and health, we can advise small holders and build business in new ways. This will improve farming practices and food security in food-challenged regions." - Large Agri-Products Co., Digital Agronomist

"We are not good at forecasting because we do not have great models, and we have a hard time making trade-offs without the objective information we need" -Ag Water Manager

Fire

Fire

	Key Use Cases of SBG Data/Products		Nat	tional	Re	gional	Field	Plant
	Pre fire Fuel Mapping							
2	Post Fire Fuel Mapping							
-	Fire risk Model							
re	Vegetation Mgmt							
	Risk Mitigation							
	Operations/Planning Changes							
	Key Use Cases of SBG Data/Products	Ann Seasc		Month	nly	Biweekh	y Weekly	Daily
	Pre fire Fuel Mapping							
	Post Fire Fuel Mapping							
	Fire risk Model							
e	Vegetation Mgmt							
	Risk Mitigation							
	Operations/Planning Changes							

Fire

Observations and impacts

- Input into SBG project: There is an urgency and need for better fire risk maps and models. SBG can significantly make improvements and augment active adoption by partnering with the coordination agencies.
- Just in improving remote sensing accuracy, SBG may have a value of >\$30M to larger utilities in fire-prone states alone. The liability for significant wildfires over the last decade has totaled billions of dollars and SBG has the potential to better mitigate the risks of wildfires.

Expert Interview Quotes:

"With better SBG Data, we could vastly improve our fire models and simulations. Without accurate moisture and fuel type data, our models can be 90% off. - Fire Risk Model Developer

"We often don't even know when or where prescribed burns are happening, and we can't tell how it impacts the likelihood of wildfires... Prescribed fire reduces wildfire, but without better data to support that we can't shape better policies and oversight." - State Fire Manager

Mineralogy

Mining	Key Use Cases of SBG Data/Products Greenfield/Brownfield exploration		Nat	tional		egional eenfield	Regional Brownfield	Site
	Geologic Process, surveys Mine Opening/Operations/Monitoring Environment/health/regulatory monitoring							
\Leftrightarrow	Key Use Cases of SBG Data/Products	Ann Seasc		Month	hly	Biweekl	y Weekly	Daily
	Greenfield/Brownfield exploration Geologic Process, surveys							
Mining	Mine Opening/Operations/Monitoring Environment/health/regulatory monitoring							

Observations and impacts

- Input into SBG project: Current RS data are are used but has limited exploration and more operational environmental applications. SBG spatial and temporal resolutions will help a well funded industry seek step changes in capabilities and vastly improve survey works.
- The use of SBG could potentially reduce initial exploration time and expenses significantly, potentially reducing from 3 years to 3 months the time needed for large tracks of land. This use has the potential to reduce exploration costs by 60%-70%.

Expert Interview Quotes:

"Our teams want mineral maps, not data. This community sees the potential for SBG and is excited about the prospects" - Spectral geologist at mining company

"SBG datasets used for exploration can enable whole new kinds of monitoring of water, vegetation and emissions to ensure safe and sustainable practices for the industry" - Applied researcher

Algal Blooms/Water Quality

	Key Use Cases of SBG Data/Products		Na	tional	Re	egional	Inlet Estuary	Site
	Regional Scale water body quality monitorin	ng						
Algal Blooms	Early warning of harmful algal blooms							
	Shellfish site water chemistry							
	Watershed/source pollution/nutrient monit	ors						
		Ann						
	Key Use Cases of SBG Data/Products	Seaso	onal	Month	ιly	Biweekh	/ Weekly	Daily
Algol Discourse	Regional Scale water body quality monitoring							
Algal Blooms	Early warning of harmful algal blooms							
	Shellfish site water chemistry							
	Watershed/source pollution/nutrient monitors							

Observations and impacts

- Input into SBG project: Global hyperspectral and TIR coverage are key benefits of SBG for wide area monitoring. The 30m resolution is adequate, although low latency is preferred.
- SBG may have a value of >\$700M in annual benefits to the US Shellfish industry. SBG data can help in screening key environmental attributes that increases average productivity by 200% because of better siting of shellfish farms. This impact would be applicable for major shellfish types and across the United States.

Expert Interview Quotes:

"There is no way to test everywhere in the field, so better targeting of when and where to test would save a lot of time and help keep people healthy." - State Water Official

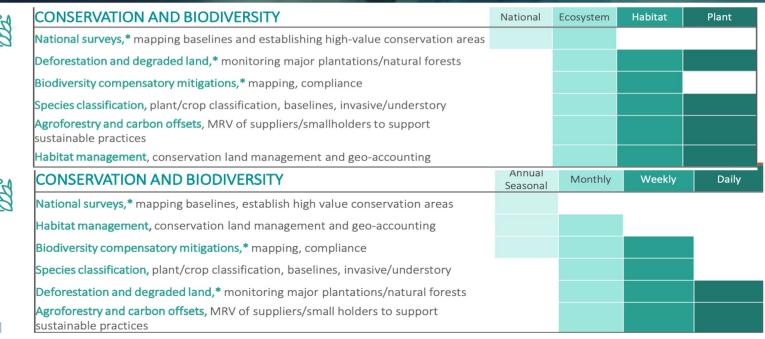
"Monitoring for HABS is great, but not much you can do about them. But finding new sites for high-growth shellfish farms will create a new industry," - Shellfish Farm Owner

Urban heat

	URBAN HEAT AND HEALTH	National	Large City	Block	Roof
	Mapping programs,* heat health and mitigation management, policy, MRV				
	Heat alerts,* high-resolution urban maps for heat alerts and policy making				
	Albedo/reflectivity/emissivity studies, urban infrastructure/surface surveys				
	Targeted heat mitigations,* siting cool buildings, cool roads, urban vegetation				
ШШ	URBAN HEAT AND HEALTH	Annual	Monthly	Weekly	Daily
		Seasonal			
	Albedo/reflectivity/emissivity studies, urban infrastructure/surface surveys	Seasonal			
		Seasonal			
	Albedo/reflectivity/emissivity studies, urban infrastructure/surface surveys	Seasonal			

Observations and impacts

- Input into SBG project: urban heat applications would benefit from more frequent revisits, particularly during heat wave events; this is a key benefit of international partnering with LSTM and TRISHNA
- In the U.S. alone, there are at least 5,000 heat-related deaths that occur each year, which could be avoided with better urban mitigation strategies such as canopies. Experts note that SBG, particularly when combined with sociodemographic data, could help prevent these deaths.


Expert Interview Quotes:

"The greatest benefit of SBG may be to developing countries where a large percentage of the urban population is vulnerable to heat stroke and death. Such maps can save lives." - International aid worker

"ECOSTRESS is a great resource, but we don't have staff who can manipulate remote sensing data. We are lucky to have NASA experts provide us with images." -City agency

Biodiversity / conservation

Observations and impacts

- Input into SBG project: biodiversity conservation community needs information about ecosystem classification and species mapping. This can be taken under consideration when considering baseline / threshold targets.
- Community will continue to need custom training, with value-added service providers representing a key partner in translating NASA data to information.

Expert Interview Quotes:

"To use SBG, we need to develop the applied science of what we do to create species maps, then we can help conservation NGOs. We need capacity building to help nonresearchers" - conservation research institute / boundary organization

"We have made big public commitments to protect species, which consumers care about. ...NASA can provide certainty and consensus on (biodiversity) metrics." - global consumer brand company

Forest management

FOREST MANAGEMENT	National	Regional	Stand	Tree
Forest inventories/certifications,* land/wood baselines and supply assessments				
Forest health,* tree canopy height, phenology/leaf out timing, insects/disease				
Carbon market/offsets, MRV for owners/NGOs				
D isturbance and regeneration , deforestation, disease, storm/fire; replanting, regrowth				
Functional diversity, functional properties across time and ecosystems/habitats				
Species classification,* substand classification and invasive/understory composition				
FOREST MANAGEMENT	Annual Seasonal	Monthly	Weekly	Daily
FOREST MANAGEMENT Forest inventories/certifications,* land/wood baselines and supply assessments		Monthly	Weekly	Daily
		Monthly	Weekly	Daily
Forest inventories/certifications,* land/wood baselines and supply assessments		Monthly	Weekly	Daily
Forest inventories/certifications,* land/wood baselines and supply assessments Species classification,* substand classification and invasive/understory composition		Monthly	Weekly	Daily
Forest inventories/certifications,* land/wood baselines and supply assessments Species classification,* substand classification and invasive/understory composition Forest health,* tree canopy height, phenology/leaf out timing, insects/disease		Monthly	Weekly	Daily

Observations and impacts

regrowth

FOREST MANIA OF MENT

- Input into SBG project: existing forest management applications would combine RS data with ground data to maintain study continuity. More frequent revisits could expand applications for phenology, harvest activity, disease and drought detection.
- If SBG can improve commercial timberland management, it can lead to annual benefits between \$52M and \$105M per year.

Expert Interview Quotes:

"If NASA could improve USFS products with better annual RS products that would be great!" - R&D Head -Pulp/Paper Commodity Manufacturer

"The future of RS in forestry and forest conservation will be hyperspectral." - Senior R&D and GIS Group Lead

Coral reef applications

CORAL REEFS	National	Reef	Colony	Coral
Marine spatial planning,* to sustain reefs and tourism				
Coastal resilience planning,* mapping and reef management				
Capture/predict bleaching events, monitor temperature and coral condition				
Disturbance monitoring, nutrient/pollution influx, wave action, temperature, etc.				
Restoration and replanting,* site and monitor				
Condition and composition, health, resiliency across time				
	Annual			
	Seasonal	Monthly	Weekly	Daily
		Monthly	Weekly	Daily
		Monthly	Weekly	Daily
Marine spatial planning,* to sustain reefs and tourism		Monthly	Weekly	Daily
Marine spatial planning,* to sustain reefs and tourism Coastal resilience planning,* mapping and reef management		Monthly	Weekly	Daily
 Marine spatial planning,* to sustain reefs and tourism Coastal resilience planning,* mapping and reef management Condition and composition, health, resiliency across time 		Monthly	Weekly	Daily

Observations and impacts

- Input into SBG project: Demonstrating HIS at 30m can address the most needed new observations and provide insight at the coral colony level and improve relocation success.
- Coral reefs ... can be the backbone of a region's entire tourism industry, providing direct and indirect local jobs... Approximately 30% of the world's reefs are accessible from nearby land and support reef-related tourism is estimated to be close to \$40B.

Expert Interview Quotes:

"Having frequent TIR revisits at 60-meter resolution will really help us understand thermal stress, especially near shore where NOAA data are too coarse to capture dynamic coastal situations." - Senior Coral Reef Researcher

"I think another great and totally unaddressed use of this data would be for mapping and monitoring sea grass and macroalgae." - Reef Restoration, Relocation and Monitoring Specialist

Food security

GLOBAL FOOD SECURITY	National	Regional	Field	Plant
Global/regional agriculture statistics,* estimates of crop yield and productivity				
Hazard events/trend monitoring,* onset, extent, and prediction of drought and floods; anomaly detection				
Land quality surveys, for suitable land, soil maps, conversion, regenerative Ag				
Food insecurity interventions,* regional models for improved interventions				
Land and field assessments, cropland, crop type classification, monitoring				
Carbon markets,* improved indicators/models for soil carbon, certification, MRV				
GLOBAL FOOD SECURITY	Annual Seasonal	Monthly	Weekly	Daily
Global/regional agriculture statistics,* estimates of crop yield and productivity				
Carbon markets,* improved indicators/models for soil carbon, certification, MRV				
Food insecurity interventions,* regional models for improved interventions				
Land quality surveys, for suitable land, soil maps, conversion, regenerative Ag				
Land and field assessments, cropland, crop type classification, monitoring				

Observations and impacts

- Input into SBG project: experts felt that SBG has the greatest potential to improve condition monitoring using 3-day TIR for better LSTM and ET/ESI models for rapid hazard events and HIS for cropland stress monitoring.
- Using SBG improved early warning models in resilience building activities could imply additional savings of \$14M to \$43M, depending on an optimistic (15% improvement) or pessimistic (5% improvement).

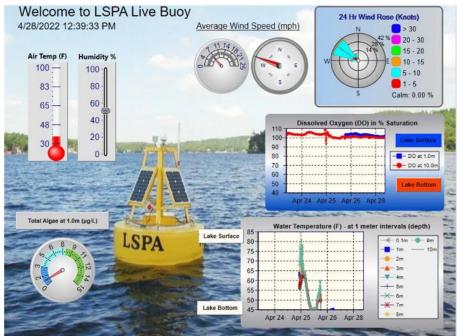
Expert Interview Quotes:

"The promise of SBG is a global set of hyperspectral plant "signatures" vs. limited multispectral data points." - Spectral Agronomy Researcher

"What is a game changer about SBG is the thermal 3-day and global scale; it would unlock our ability to map some parts of the world." - Digital Ag startup, R&D Lead

Proposed next steps: Community Engagement

- Goal 1: Engage new and traditionally underrepresented communities
- Goal 2: Engage the next generation of scientists
- Goal 3: Co-develop applied science use cases
- Goal 4: Interface and collaborate actively with NASA-designated DAAC
- Goal 5: Develop community-specific resources through open science and applications practices


Collaborate and build on lessons learned from other mission applications

- PACE and GLIMMR
- ECOSTRESS
- EMIT
- And many others!

RTI studies provides initial introduction between SBG and application area/sector, particularly for organizations that are outside of our conventional user community

- Supports science formulation for SBG through a transdisciplinary Global Lakes Ecological Observatory Network (GLEON) team including 9 graduate students
- Develop their technical skills for satellite data analysis, synthesis with in situ data, modeling of inland lake water quality
- Engage GLEON and NASA networks toward calibration/validation of satellite products using open source models
- Learn science and teamwork skills, present, document in publications

Use satellite and in situ data to study biological processes governing the health of lakes and lake metabolism

Summary

- Applications are fully integrated and consulted throughout mission study, examples include engineering design session, collaboration on SHIFT airborne campaigns and SBG-SISTER
 - SBG is the first to integrate apps at architecture stage
 - SBG has shown that apps and science can be considered synergistically, which provide a more comprehensive set of needs driving architecture and measurement discussions and decisions (i.e. hardware, latency)
 - Applications can have unique technical needs not covered by science alone, such as low latency
- Applications experience (ROSES, programs, mission applications) will be critical for informing next stage in implementing open science and applications practices to ensure accessibility and information exchange

Welcome to Lawrence Friedl, NASA Earth Sciences, Director of Applied Sciences

Algorithms Working Group

- Team: K. Cawse-Nicholson, P. Townsend, <u>250+ community members</u>
- Deep dive early outcomes:

PRODUCT	MATURITY	GREATEST NEED
Snow products	High	In situ data in glaciers and below-canopy snow
Evapotranspiration	High	Data fusion and improved latency
High Temp Features	High	High spatial resolution (<5 m) thermal data over lava
Substrate Composition	High (minerals)	VSWIR/TIR fusion
Proportional Cover	Medium	Complimentary combination of algs from different fields
Volcanic Gas&Plumes	Medium	Improvements in computational efficiency
Water Biogeochem	Medium	Analysis of applicability and compatibility of PACE algorithms for coastal and inland waters, at SBG GSD
Vegetation Traits	Low	Global in situ and remote sensing data
Substrate Composition	Low (soils)	Global in situ and remote sensing data
Water Biogeophysics	Low	In situ water column data
Aquatic Classification	Low	Global datasets; build upon biogeochem & biogeophysics products to produce applications-ready data

SISTER: SBG Space-based Imaging Spectroscopy and

Thermal pathfindER

For more information, please email <u>sbg@jpl.nasa.gov</u>, or <u>mgierach@jpl.nasa.gov</u> and <u>ptownsend@wisc.edu</u> or <u>ian.g.brosnan@nasa.gov</u> and <u>jon.Jenkins@nasa.gov</u> directly

Primary Objectives & Timeline

- Prototype architectures and workflows to generate prototype high-dimensional, high-value SBG data
- Distribute prototype SBG data for community evaluation and training

FY21 (Oct 2020 – Sept 2021)

Prototype workflows & system components

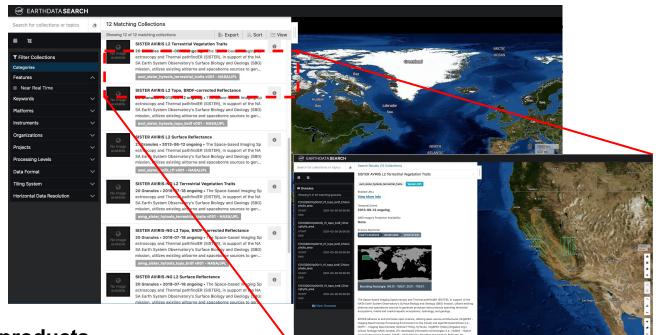
Deliverable: Distribute land & water reflectance for community evaluation / feedback

FY22-23 (Oct 2021 – Sept 2023)

Implement select prototype L2B+ algorithms

Deliverable: Distribute prototype L2B+ products for community evaluation / feedback

FY24-25 (Oct 2023 - Sept 2025)


Adapt workflows based on emerging SBG ATBDs **Deliverable:** Refine and redistribute prototype SBG products for community evaluation / feedback

Prototype Data Available To-Date

- NASA Ames Research Center
 - Global Hyperspectral Synthetic Data (AGHSD) is available at <u>https://data.nas.nasa.gov/aghsd/data.php</u>
 - Global Hyperion L1 radiance; Global L2 reflectance (in progress), investigating contemporary georectification tools
- NASA Jet Propulsion Laboratory
 - Select* AVIRIS-Classic, AVIRIS-Next Generation, and PRISMA scenes for surface reflectances and uncertainties; topo, BRDFcorrected reflectances; terrestrial vegetation traits

*More scenes, data streams, and algorithms (e.g., aquatic, snow/ice, geology) will continuously be incorporated in FY22+

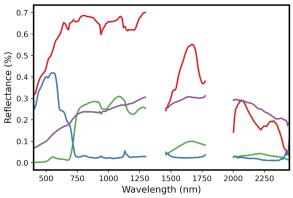
ORNL and LP.DAAC will be the official DAACs for SISTER products

SISTER: Prototype SBG Algorithms & Products

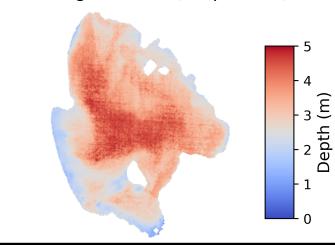
SISTER will implement select L2B+ algorithms (informed by the Algorithms and Applications Working Groups) to generate prototype SBG products for community evaluation and engagement

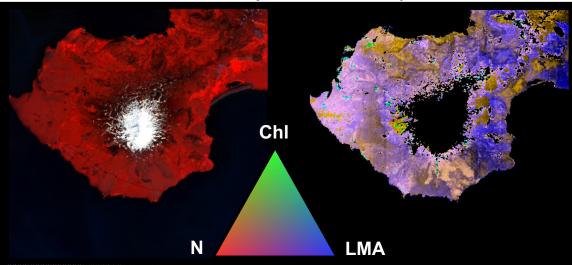
SBG Algorithm Class	SBG Algorithm Products (examples)
CORE Algorithms	
Earth Surface Temperature and Emissivity	Land Surface Temperature* and Emissivity
VSWIR Reflectance	Land and Water Reflectances, BRDF Corrections, Albedo
Cover Classifications	Cloud, Water, Land Cover, Plant Functional Types, etc.
PRODUCT Algorithms	
Terrestrial Ecosystems	
Vegetation Traits	Nitrogen, LMA, Chlorophyll, Canopy water
Evapotranspiration	ET*, Evaporative stress index
Proportional Cover	GV, NPV, Substrate, Snow/Ice, Burned Area
Geology/Earth Surface	
Substrate Composition	Mineral type*, Fractional abundance*, Soil types and constituents
Volcanic Gases and Plumes	SO2, Volcanic ash
High Temperature Features	Volcanic temperature anomalies (lava temperature), Forest fires
Aquatic and Coastal Ecosystems	
Water Biogeochemistry	Pigments, CDOM, Suspended particulate matter
Water Biophysics	Diffuse light attenuation, Inherent optical properties, Euphotic depth, PAR
Aquatic Classification	Phytoplankton functional types, Floating vegetation, Benthic cover, Wetlands
Snow and Ice	
Snow albedo	Albedo, Grain size, SSA, Light absorbing particles, Fractional cover

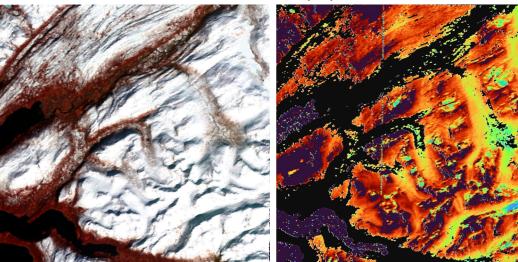
*Leverages ECOSTRESS and EMIT algorithms

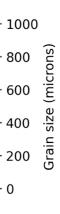

Cawse-Nicholson et al. 2021

SISTER: Prototyping SBG Algorithms using PRISMA and DESIS



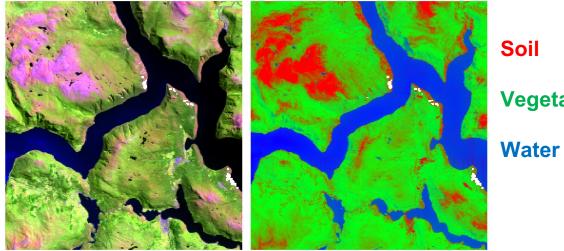



Bathymetry (Thompson et al. 2016) DESIS Lago Trasimeno, Italy June 04, 2021

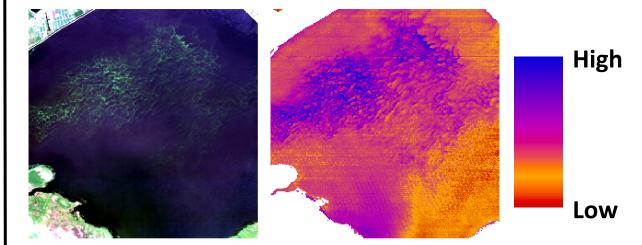


Vegetation Biochemistry PRISMA Snæfellsjökull, Iceland July 02, 2020

Snow grain size (Nolin and Dozier 2000) PRISMA Surnadal, Norway April 21, 2020



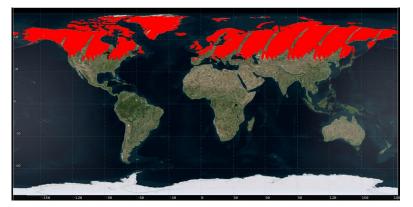
SISTER: Prototyping SBG Algorithms using PRISMA and DESIS



Fractional Cover (EMIT Science Team) PRISMA Luster Allmenning, Norway July 23, 2021

Soil Vegetation

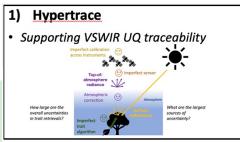
Phycocyanin (O'Shea et al. 2021) PRISMA Lake Okeechobee, Florida June 26, 2020

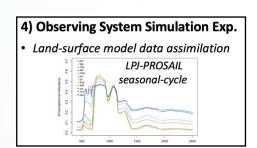


Cal/Val Working Group

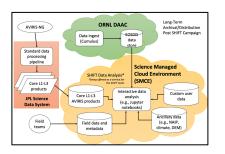
- Team: Kevin Turpie, Ray Kokaly, <u>100+ community members</u>
- Goals: Support mission development radiometric, thermal, spectral and geometric calibration and validation strategies and identifying resources, methods and standards supporting data product validation.
- Recent Achievements:
 - Submitted manuscript on SBG Cal/Val concepts for JGR-B.
 - Presented at 2022 Ocean Science Meeting annual meeting on inter-calibration strategies and challenges with PACE and GLIMR.
 - Continued orbit modeling for intercalibration SBG, CHIME, LSTM and TRISHA, Landsat, Sentinel 2, CLARREO pathfinder and SCR.

2 months of near-simultaneous terrestrial observations between SBG VSWIR and PACE.

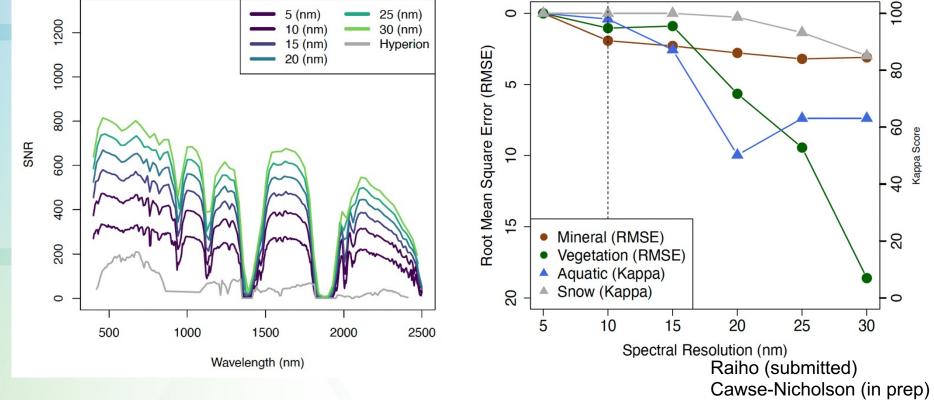



- Science Value Trades Study
 - Terrestrial algorithm performance and glint avoidance
- Observing system simulation experiment
- 3. Synthetic data generation
 - Science data system synergies with SISTER and SHIFT

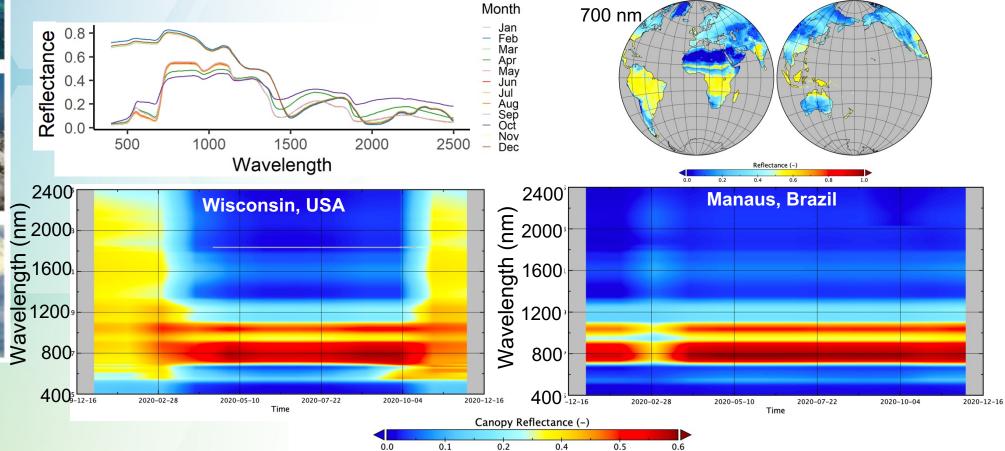
1


2.

4.

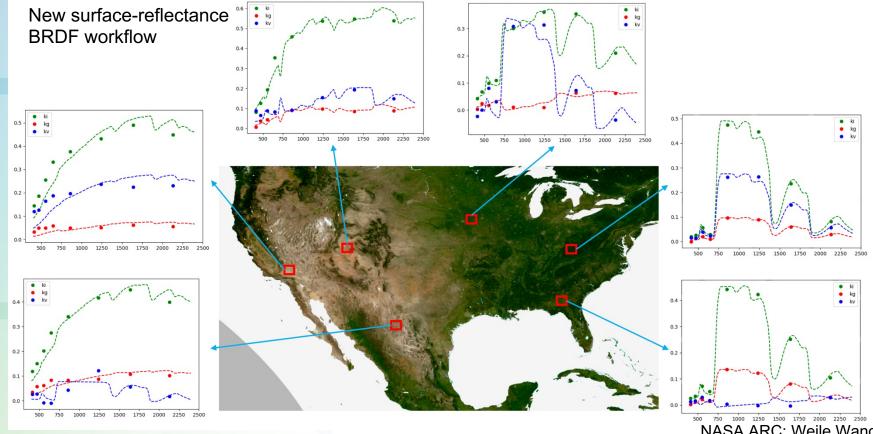


- Science Value Trades Study:
- Extending Hypertrace framework to evaluate instrument tilt and glint avoidance effects on algorithm performance



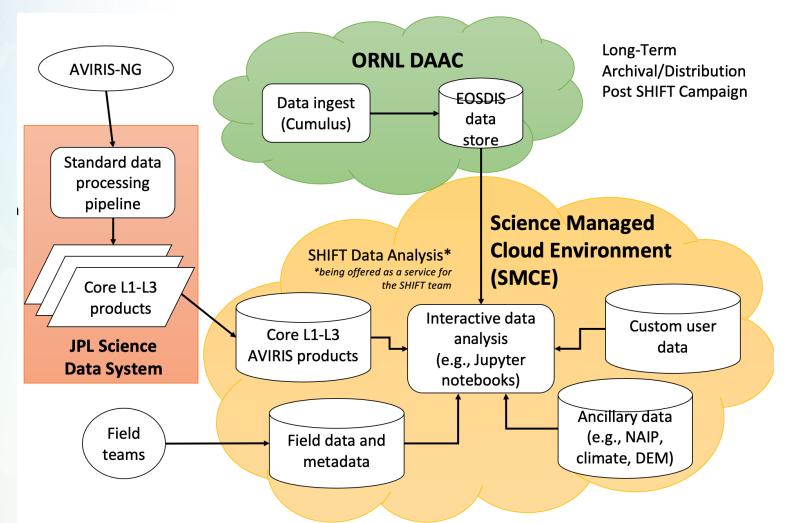
Observing system simulation experiment: LPJ-Prosail

• Spectra simulated each day for entire global land surface



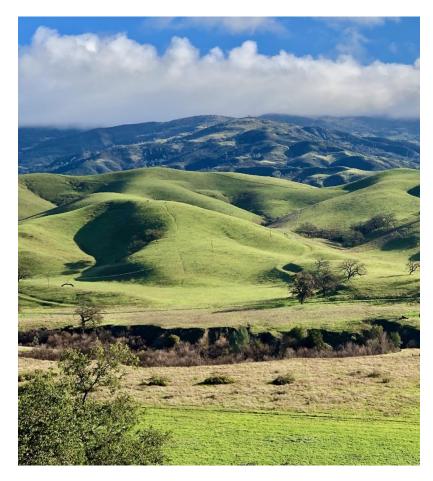
Synthetic data generation: Ames Global Hyperspectral Synthetic Dataset (AGHSD) version 2: Surface Reflectance

NASA ARC: Weile Wang & Jennifer Dun https://data.nas.nasa.gov/aghsd/

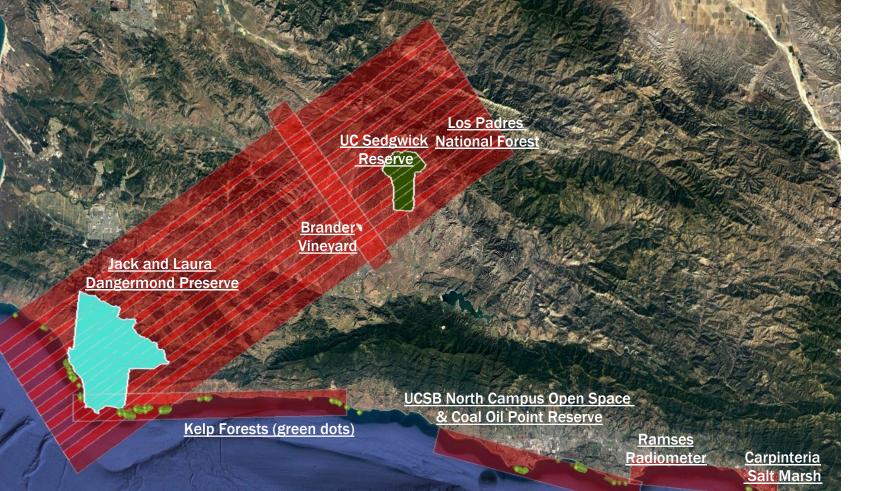


Science Mission Cloud Environment (SMCE) to support SHIFT

Field Campaign WG


- Goals: support mission concept development by scoping and executing SBG-lea field campaigns and coordinating with other relevant field activities
- SBG High Frequency Timeseries
- Tracking/coordinating with ABoVE, BioSCape, SnowEX, HyTES Europe, ARCSIX, NEON AOP, CarbonMapper, etc
- Scoping potential campaigns to address/support:
 - Algorithm development/testing
 - Applications Early Adopters
 - Cal/Val prototyping and cross-calibration
 - Issues of scale
 - Synergies with other ESO missions

SHIFT: SBG High-Frequency Timeseries



- Collect the first openly-available airborne VSWIR spectral imagery dense time series at an approximately weekly cadence over a period of significant phenological change.
- Enable the NASA SBG team to conduct traceability analyses related to science value of revisit without relying on multispectral proxies.
- Enable testing algorithms for consistent performance over seasonal time scales, and testing end-to-end workflows including community distribution.
- Provide early adoption test cases to SHIFT application users, and incubate relationships with basic and applied science partners at the UC Santa Barbara Sedgwick Reserve and The Nature Conservancy.

SHIFT: SBG High-Frequency Time series

SBG Opportunities for Involvement

- In-person SBG community workshop in 2022 (Oct 12-14, DC area)
- Internship programs at JPL and other NASA centers:
 - Dave Schimel (<u>dschimel@jpl.nasa.gov</u>)
 - Ben Poulter (<u>Benjamin.poulter@nasa.gov</u>)
- SBG working groups: ongoing, regular meetings and seminars
 - Algorithms (<u>kcawseni@jpl.nasa.gov</u>)
 - Modeling (<u>benjamin.poulter@nasa.gov</u>)
 - Calibration/Validation (<u>kturpie@umbc.edu</u>)
 - Applications (<u>christine.m.lee@jpl.nasa.gov</u>
 - SHIFT (<u>katherine.d.chadwick@jpl.nasa.gov</u>)
- Email us (seriously we want to hear from you): sbg@jpl.nasa.gov
- Join the conversation at the SBG Community Slack

