SBG TIR Geology Products Update

Michael Ramsey, U. Pittsburgh/Jet Propulsion Laboratory, California Institute of Technology James Thompson, U. Texas Vince Realmuto, Jet Propulsion Laboratory, California Institute of Technology

Overview

Higher-Level Geology Products

- new for a TIR mission as standard data products
 - L3 Elevated Temperature Features (ETF)
 - L3 Surface Mineralogy (SM)
 - L4 Volcanic Activity (VA)

Background

- analog datasets
- current approach to algorithm testing/assessment

Moving Forward

- what needs to happen next?
 - further testing and cross-algorithm comparisons
 - expanded datasets

TIR Science/Product Organization

ACRONYMS

- RAS Radiance at Sensor
- **LSTE** Land Surface Temperature and Emissivity
- **NDVI** Normalized Difference Vegetation Index
- **STiC** Surface Temperature Initiated Closure
- WUE Water Use Efficiency
- ESI Evaporative Stress Index
- **ETF** Elevated Temperature Features
- VA Volcanic Activity
- SM Surface Mineralogy

Simulated Data

Created from Airborne MASTER Data

- has both TIR and MIR bands
- SBG band centers were linear interpolations between the two nearest MASTER bands
- spatial resolution degraded to 60 m
- atmospheric correction applied

Data

- currently working with 5 datasets
 - both day/night data
 - with/without high temperature features
 - mineralogical diversity

Elevated Thermal Features (ETF) Product

Algorithm Assessment

- began with 26 potential thermal anomaly algorithms from the volcano and wildfire communities
- preference given to those with:
 - open access (code freely available)
 - global scale application
 - MIR and TIR data usage
 - computationally fast (will operate on all land data)
 - spectral/spatial techniques over temporal approaches

Initial Selection

- six were tested (green) with five others (orange) as possible later stage testing
- others may be added
 - especially if the code is made available

<u>Algorithm</u>	Type	Classification	<u>Sensor</u>	Bands	<u>Coverage</u>	<u>Reference</u>
40740	Contextual,	Spatial,	AOTED	TID	0	D (0000)
ASTAD	Machine	Temporal	ASTER	ΠR	Global	Ramsey et al. (2023)
ASTAD-ML	Learning Machine	Spatial	ASTER	tir Mir,	Global	Corradino et al. 2023
ASTAD-ML (NTI)	Learning	Spatial	ASTER	TIR	Global	Corradino et al. 2023
ASTER ID			ASTER	TIR	Global	Urai (2011)
AVA			ASTER AVHRR,	tir Mir,	Global Specific	Linick et al. (2014)
AVHOTRR			SEVIRI	TIR	Targets	Lombardo et al. (2016)
AVTOD	Contextual	Spatial	ASTER	TIR	Americas	Reath et al. (2019)
		Spatial,				
ECOHOT	Contextual,	Spectral,	ECO-	TID	Clobal	Hullov et al. (2020)
ECOHOT	remporar	remporai	VIIRS	MIR	Giobai	Fiulley et al. (2020)
FIRMS	Contextual	Spectral	MODIS	TIR	Global	Davies et al. (2009)
	Contextual,		MODIS,	MIR,	Europe/Afri	
HOTSAT	Fixed	Spectral, Spatial	SEVIRI	TIR	ca	Ganci et al. (2011)
				MIR,	Europe/Afri	0 1: 1 (0010)
HOTVOLC	Contextual	Spectral, Spatial	SEVIRI	MID	са	Gounier et al. (2016)
MIROVA	Fixed	Spectral Spatial	MODIS	TIR	Global	Connola et al. (2016)
WII CO VA	Contextual.	opectral, opatia	WODIO	MIR.	Ciobai	
MODLEN	Fixed	Spectral, Spatial	MODIS	TIR	Global	Kervyn et al. (2006)
				MIR,		Flynn et al. (2002) and Wright e
MODVOLC	Fixed	Spectral	MODIS	TIR	Global	al. (2002)
	Temporal,	Spectral,	MODIS	MIR,	Clobal	Kooppon and Wright (2010)
WODVOLG2	Contextual	remporal	WODIS	HK	Giobai	Roeppen and Wright (2010)
MOUNTS	Fixed	Spectral, Spatial	MSI	SWIR	Global	Valade et al. (2019)
	Contextual,		MODIS,	MIR,		
MYVOLC	Fixed	Spectral, Spatial	ASTER	TIR	Global	Hirn et al. (2008)
				NIR,		
NHI	Fixed	Spectral	MSI	SWIR	Global	Marchese et al., (2019)
NIGHTEIRE	Contextual, Temporal	Temporal	VIIRS	SWIR, MIR	Global	Elvidge et al. (2013)
NOTITINE	remporar	rempora	AVHRR.	WIIIX	Ciobai	
	Contextual,	Spatial,	MODIS,	MIR,		
OKMOK	Temporal	Temporal	VIIRS	TIR	N. Pacific	Dean et al. (1998)
			AVHRR,			
DAT/DOT	Contoutual	Cratial	MODIS,	МІр	Cassifie	
(DETIDA)	Contextual,	Spatial, Temporal	SEVIRI,	TIP	Specific	Tramutoli (1998)
	remporar	remporar	ASILIN	MIR.	Asia and	Trainition (1990)
REALVOLC	Contextual	Temporal	MODIS	TIR	Americas	Kaneko et al. (2010)
				VIS,		
	Machine	.		NIR,	Specific	0
RF	Learning	Spectral	MSI	SWIR	largets	Corradino et al., (2022)
VAST	Contextual	Spatial	AVHRR	TIR	Global	Harris et al. (1995)
	JontoAtda	opada	AVHRR,	MIR,	Siobal	
VOLCVIEW			MODIS,	TIR	Pacific	Schneider et al. (2014)
VOLSATVIEW			AVHRR.	MIR.		
			MODIS,	TIR	N. Pacific	Gordeev et al. (2016)
			VIIRS			· · · ·

Elevated Thermal Features (ETF) Product

Initial Results

- minimal changes were made to the code of each algorithm
- results assessed on data with (and without) thermal anomalies
 - emphasis placed upon speed and low false positive rates
 - assessment made against manually-selected thermal anomalies in each image
 - or lack thereof for the nullhypothesis cases (e.g., Kelso Dunes, CA)
- performance matrices used for assessment

Kelso Dunes, CA (null hypothesis)

Hawaii Night – Temperature Retrieval

Hawaii Night – Anomaly Retrieval

Anomaly Detection

Hawaii Night – Anomaly Retrieval

Elevated Thermal Features (ETF) Product

ASTAD

1.00000

0.22205

0.12489

0.99905

FIRMS

0.38384

0.53410

0.87767

0.99833

Hawaii Night

Global Accuracy

Precision

F1 Score

Recall

ASTAD-ML (NTI)

0.75890

0.52490

0.40120

0.99921

Performance Matrices

– where:

- ↑ Precision: low false • positives
- Recall without including true negatives
 - due to unbalanced data
- ↑ Recall: low false negatives •
- Global Accuracy: overall • accuracy of true predictions
 - unbalanced data bias

**	Sur	nm	ary
----	-----	----	-----

- no clear "winner" at this stage (computational speed vs. algorithm accuracy?)
- continued testing on larger/more diverse data needed

Time (secs/pixel)	3.7 × 10-4	2.7 × 10 ⁻⁷	2.4 × 10 ⁻⁷	3.2 × 10⁻⁵	6.7 × 10 ⁻⁶	2.9 × 10⁻⁵
Totals	ASTAD	FIRMS	MIROVA	ASTAD-ML	ECOHOT	ASTAD-ML (NTI)
Precision	0.22836	0.10130	0.12944	0.49113	0.05075	0.42645
F1 Score	0.21525	0.17526	0.21303	0.28822	0.09289	0.35230
Recall	0.20357	0.64948	0.60140	0.20396	0.54711	0.30012
Global Accuracy	0.99949	0.99789	0.99847	0.99965	0.99631	0.99962
Time (secs/pixel)	3.8 × 10-4	2.9 × 10 ⁻⁷	2.0 × 10 ⁻⁷	3.1 × 10⁻⁵	5.9 × 10 ⁻⁶	3.2 × 10-⁵

MIROVA

0.34473

0.49393

0.87083

0.99806

 9.4×10.7

ASTAD-ML

0.96285

0.41689

0.26604

0.99919

2 2 4 10-5

ECOHOT

1.00000

0.79485

0.65954

0.99963

 6.7×10^{-6}

Goal

- map the most abundant rock forming minerals plausible for a (now) 6-band instrument
- chose to limit to the top 9-10 by abundance:
 - plagioclase feldspar, potassium feldspar, quartz, pyroxene, amphibole, mica, olivine, carbonate, gypsum
 - plus weight percent silica (WPS)
 - will only be applied to low emissivity regions using a mask (e.g., GED from ASTER)
 - essentially deserts, arid lands, and vegetation/snow-free areas

Testing Approach

- similar to ETF although starting with a much smaller algorithm subset
 - spectral mixture analysis (SMA) aka linear deconvolution
 - MESMA
 - "fast" MESMA

Kelso Dunes, CA

Kelso Dunes, CA

Kelso Dunes, CA

Initial Results

- MESMA approach allows all end-member minerals to be analyzed concurrently
- "fast" MESMA runs quickly at the 6-band spectral resolution (~ 7.4×10⁻⁷ s/pixel)
- more testing is required
 - diverse set of compositional scenes
 - analyze in greater detail of the RMS error and adding a blackbody endmember
- *figure:* prior surface compositional study at Kelso Dunes, CA with MASTER
 - A) visible data w/ sample points
 - **B)** prior SBG configuration (5 bands)
 - C) current SBG configuration (6-bands)
 - D) hypothetical configuration (7-bands)

Volcanic Activity (VA) Product

Scope

- VA produced only over the \sim 1500 active/restless volcanoes
- 50 km×50 km centered on each target
- viewed as hybrid product combining plume and thermal detection *(initially)* followed by expanded radiative transfer (RT) modeling *(for positive plume)* detections)
- $-\uparrow$ values of plume + \uparrow thermal flux per pixel reported in VA index image
- combines the Plume Tracker model (Realmuto and Berk, 2016) with the ASTAD thermal algorithm (Ramsey et al., 2023; Corradino, et al., 2023)

Plume Tracker rapid index images

Volcanic Activity (VA) Product

Scope

- positive VA index images:
 - produced as a LL product available within 24 hours
 - also will trigger more computationally expensive RT retrieval of the plume composition
 - 1. estimate temperature of surface beneath plume, exploiting plume transparency ($\lambda > 9.5 \ \mu m$)
 - 2. estimate SO₂ concentration at various heights by modeling plume transmission in SO₂ band (λ : 8 9.5 µm)

Questions?

Volcanic SO₂ Emissions: ASTER Observations of Mount Etna, 2011-07-29

• SO₂ Transparent at Wavelengths > 9.5 μm

SBG Community Webinar | 21 Sept 2023

Wavelength (µm)

SO₂ Index: Targeting the SO₂ Retrievals

Mount Etna Eruption | 2018-12-27 | VIIRS-N20 | 11:48 UTC

Water Vapor Absorption

Radiative Transfer (RT) Modeling is Computationally-Expensive, and Thousands of RT Modeling Runs are Required to Map a Plume (0.008 s/pix)

- Focus, or Target, the Retrieval Procedure on Locations Most Likely to **Contain Plumes**
- **Proximity Mask:** Eliminate Locations (within SBG scene) >250 km from **Historically-Active Volcanoes**
- **SO**₂ **Index:** Based on Brightness Temperature Difference (BTD), Represents SO₂ Absorption
- Surface Emissivity (Silica-Rich Minerals) and Water Vapor Absorption Can Mimic SO₂ Absorption. Water Vapor Absorption Increases with Increasing Satellite (View) Zenith Angle
- Emissivity Correction: Requires Plume-Free Map of Surface Emissivity. Currently based on 5-km CAMEL Maps, which must be re-sampled to Scene Dimensions (~2 x 10⁻⁵ s/pix)
- Water Vapor Gradient: Attenuation **Based on Satellite Zenith Angle**

Original SO₂ Index Map

Surface Emissivity (Qtz Sand) Mimics SO₂ Absorption

> 20 80 Ω 40 60

> > SO2 Index

SO₂ Index Map following Surface Emissivity **Correction and Water Vapor Gradient**

