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Abstract 
 

The 2017-2027 Decadal Survey for Earth Science and Applications from Space (ESAS 2017) 

was released in January 2018. ESAS 2017 was driven by input from the scientific community 

and policy experts and provides a vision and strategy for Earth observation that informs federal 

agencies responsible for the planning and execution of civilian space-based Earth-system 

programs in the coming decade, including the National Aeronautics and Space Administration 

(NASA), the National Oceanic and Atmospheric Administration (NOAA), and the U.S. 

Geological Survey (USGS). NASA has, thus far, utilized this document as a guide to inform 

exploration of new Earth mission concepts which are later considered as candidates for fully 

funded missions. High-priority emphasis areas and targeted observables include global-scale 

Earth science questions related to hydrology, ecosystems, weather, climate, and solid earth. One 

of the Designated Observables (DO’s) identified by ESAS 2017 was Surface Biology and 

Geology (SBG) with a goal to acquire concurrent global hyperspectral visible to shortwave 

infrared (VSWIR; 380–2500 nm) and multispectral midwave and thermal infrared (MWIR: 3–5 

μm; TIR: 8–12 μm) imagery at high spatial resolution (~30 m in the VSWIR and ~ 60 m in the 

TIR) and sub-monthly temporal resolution globally. The final sensor characteristics will be 

determined during the mission formulation phase, but ESAS 2017 provides guidance for a 

VSWIR instrument with 30–45 m pixel resolution, ≤16 day global revisit, SNR > 400 in the 

VNIR, SNR > 250 in the SWIR, and 10 nm sampling in the range 380–2500 nm. It also 

recommends a TIR instrument with more than five channels in 8–12 μm, and at least one channel 

at 4 μm, ≤60 m pixel resolution, ≤3 day global revisit, and noise equivalent delta temperature 

(NEdT) ≤0.2 K (NASEM, 2018; Schimel et al., 2020). Alone, SBG will provide a 

comprehensive monitoring approach globally. Complemented with systems like Landsat and 

Sentinel-2, global change processes with faster than 16-day global change rates can be mapped—

at lower spectral resolution—but high temporal revisit. 
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1 Introduction 

The Surface Biology and Geology (SBG) thermal infrared (TIR) instrument – termed the 

Observing Thermal Emission Radiometer (OTTER) consists of a TIR multispectral scanner with 

six spectral bands operating between 8 and 12.5 µm and two mid-infrared (MIR) bands at 4 μm 

and 4.8 µm, with a 60 m pixel resolution, 3 day global revisit, and noise equivalent delta 

temperature (NEdT) ≤0.2 K (NASEM, 2018; Schimel et al., 2020). The TIR data will be acquired 

at a spatial resolution of 60m x 60m with a swath width of 935 km (60) from an altitude of ~700 

km. This document outlines the theory and methodology for generating the OTTER Level-2 (L2) 

land surface temperature and emissivity (LST&E) products. The LST product is derived from the 

six TIR spectral bands between 8 and 12.5 µm, while the emissivity is retrieved for all 6 TIR and 

2 MIR bands. The LST&E products are retrieved from the surface spectral radiance that is obtained 

by atmospherically correcting the at-sensor spectral radiance. Knowledge of the surface emissivity 

is critical for accurately recovering the surface temperature, a key climate variable in many 

scientific studies from climatology to hydrology, modeling the greenhouse effect, drought 

monitoring, and land surface models (Anderson et al. 2007; French et al. 2005; Jin and Dickinson 

2010). 

In addition to surface energy balance, LST&E products are essential for a wide range of 

other Earth system studies. For example, emissivity spectral signatures are important for geologic 

studies and mineral mapping studies (Hook et al. 2005; Vaughan et al. 2005). This is because 

emissivity features in the TIR region are unique for many different types of materials that make 

up the Earth's surface, for example, quartz, which is ubiquitous in most of the arid regions of the 

world. Emissivities are also used for land use and land cover change mapping since vegetation 

fractions can often be inferred if the background soil is observable (French et al. 2008).  
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The SBG TIR measurement derives its heritage from the ECOSTRESS measurement in 

terms of number of bands and spatial resolution. ECOSTRESS is a five-channel multispectral TIR 

scanner that was launched to the International Space Station (ISS) in June 2018 and has a 70-m 

spatial resolution and revisit time that is variable between 3-5 days on average. The OTTER L2 

LST product will be validated with a combination of Temperature-based (Coll et al. 2005; Hook 

et al. 2004) and Radiance-based methods (Hulley and Hook 2012; Wan and Li 2008) using a global 

set of validation sites. The L2 emissivity product will be validated using a combination of lab-

measured samples collected at various sand dune sites, and with the ASTER Global Emissivity 

Database (ASTER GED)  (Hulley and Hook 2009b).  

Maximum radiometric emission for the typical range of Earth surface temperatures, 

excluding fires and volcanoes, is found in two infrared spectral "window" regions: the midwave 

infrared (3.5–5 µm) and the thermal infrared (8–13 µm). The radiation emitted in these windows 

for a given wavelength is a function of both temperature and emissivity. Determining the separate 

contribution from each component in a radiometric measurement is an ill-posed problem since 

there will always be more unknowns—N emissivities and a single temperature—than the number 

of measurements, N, available. For SBG, we will be solving for one temperature and eight 

emissivities. Therefore, an additional constraint is needed, independent of the data. There have 

been numerous theories and approaches over the past two decades to solve for this extra degree of 

freedom. For example, the ASTER Temperature Emissivity Working Group (TEWG) analyzed 

ten different algorithms for solving the problem (Gillespie et al. 1999). Most of these relied on a 

radiative transfer model to correct at-sensor radiance to surface radiance and an emissivity model 

to separate temperature and  
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Table 1: SBG measurement characteristics as compared to other spaceborne TIR instruments. 

Instrument Platform Resolution (m) Revisit 

(days) 

Daytime 

overpass 

TIR bands  

(8-12.5 µm) 

Launch year 

OTTER SBG 60 3 12:30 pm 6 2028* 

ECOSTRESS ISS 38 × 68 3-5 Multiple 5 2018 

ASTER Terra  90 16 10:30 am 5 1999 

ETM+/TIRS Landsat 7/8 60-100 16 10:11 am 1/2 1999/2013 

VIIRS Suomi-NPP 750 Daily 1:30 am/pm 4 2011 

MODIS Terra/Aqua 1000 Daily 10:30/1:30 

am/pm 

3 1999/2002 

GOES Multiple 4000 Daily Every 15 min 2 2000 

 

 emissivity. Other approaches include the split-window (SW) algorithm, which extends the SST 

SW approach to land surfaces, assuming that land emissivities in the window region (10.5–12 µm) 

are stable and well known. However, this assumption leads to unreasonably large errors over 

barren regions where emissivities have large variations both spatially and spectrally. The ASTER 

TEWG finally decided on a hybrid algorithm, termed the temperature emissivity separation (TES) 

algorithm, which capitalizes on the strengths of previous algorithms with additional features 

(Gillespie et al. 1998).  

TES is applied to the land-leaving TIR radiances that are estimated by atmospherically 

correcting the at-sensor radiance on a pixel-by-pixel basis using a radiative transfer model. TES 

uses an empirical relationship to predict the minimum emissivity that would be observed from a 

given spectral contrast, or minimum-maximum difference (MMD) (Kealy and Hook 1993; 

Matsunaga 1994). The empirical relationship is referred to as the calibration curve and is derived 

from a subset of spectra in the ASTER spectral library (Baldridge et al. 2009). A new calibration 
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curve, applicable to SBG TIR bands, will be computed using the latest ECOSTRESS spectral 

library v2 (Meerdink et al. 2019), in addition to spectra from 9 pseudo-invariant sand dune sites 

located in the US Southwest (Hulley et al. 2009a). TES has been shown to accurately recover 

temperatures within 1 K and emissivities within 0.015 for a wide range of surfaces and is a well 

established physical algorithm that produces seamless images with no artificial discontinuities 

such as might be seen in a land classification type algorithm (Gillespie et al. 1998). 

The remainder of the document will discuss the SBG instrument characteristics, provide a 

background on TIR remote sensing, give a full description and background on the atmospheric 

correction and the TES algorithm, provide quality assessment, discuss numerical simulation 

studies and, finally, outline a validation plan. 
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2 SBG Instrument Characteristics  

2.1 Band positions 

  
The TIR instrument will acquire data from a sun-synchronous orbit of 700 km with 60m spatial 

resolution in eight spectral bands located in the MIR (2) and TIR (6) part of the electromagnetic 

spectrum between 4 and 12.5 µm  shown in Figure 1. The center position and width of each band 

is provided in Table 2. The positions of three of the TIR bands closely match the first three 

thermal bands of ASTER, while two of the TIR bands match bands of ASTER and MODIS 

typically used for split-window type applications (ASTER bands 12–14 and MODIS bands 31, 

32). It is expected that small adjustments to the band positions will be made based on ongoing 

engineering filter performance capabilities. 

 

Figure 1: SBG boxcar filters for two MIR bands and six TIR bands from 3.8-12.5 microns with a typical 

atmospheric transmittance spectrum in gray highlighting the atmospheric window regions. Note the spectral 

width and location of the filters are finalized (see Table 2), however the spectral shape will be determined 

when the detectors are fabricated.  
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Table 2: SBG final band positions and characteristics. 
 

Band 

# 

Center 

Wavelength 

(µm) 

Spectral 

Width 

(FWHM) 

(nm) 

Tolerance 

Center 

Wavelength 

(± nm) 

Tolerance 

Spectral 

Width 

(±nm) 

Knowledge 

Center 

Wavelength 

(±nm) 

Knowledge 

Spectral 

Width 

(±nm) 

Accuracy 

(Kelvin) 

NEdT 

(Kelvin) 

Range 

(Kelvin) 

MIR-1 3.98 20 (TBC) 50 10 10 10 ≤3@750 ≤0.3@750 700-1200 

MIR-2 4.8 150 (TBC) 100 50 20 20 ≤1@450 ≤0.2@450 400-800 

TIR-1 8.32 300 (TBC) 100 50 20 20 ≤0.5@275 ≤0.2@275 200-500 

TIR-2 8.63 300 (TBC) 100 50 20 20 ≤0.5@275 ≤0.2@275 200-500 

TIR-3 9.07 300 (TBC) 100 50 20 20 ≤0.5@275 ≤0.2@275 200-500 

TIR-4 10.30 300 (TBC) 50 50 20 20 ≤0.5@275 ≤0.2@275 200-500 

TIR-5 11.35 500 (TBC) 100 50 20 20 ≤0.5@275 ≤0.2@275 200-500 

TIR-6 12.05 500 (TBC) 100 50 20 20 ≤0.5@275 ≤0.2@275 200-500 
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The TIR instrument will operate as a push-whisk mapper very similar to ECOSTRESS with 

256 pixels in the cross-whisk direction for each spectral channel (Figure 2), which enables a wide 

swath and high spatial resolution. As the spacecraft moves forward, the scan mirror sweeps the 

focal plane ground projection in the cross-track direction. Each sweep is 256-pixels wide. The 

different spectral bands are swept across a given point on the ground sequentially. From the 

spacecraft altitude of 665 km, the resulting swath is 935 km wide. The scan mirror rotates at a 

constant angular speed and sweeps the focal plane image 68.8 across nadir, then  to two on-board 

blackbody targets at 300 K and 340 K. Both blackbodies will be viewed with each cross-track 

sweep every 1.29 seconds to provide gain and offset calibrations.  

2.2 Radiometer 
 

[Updated info here on radiometer] 
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Table 3: SBG TIR Instrument and Measurement Characteristics 

Spectral 

Bands (µm) 4, 4.8, 8.32, 8.63, 9.07, 10.3, 11.35, 12.05 

Bandwidth (nm) 20, 150, 300, 300, 300, 300, 500, 500 

Accuracy at 300 K <0.01 µm 

Radiometric 

Range TIR bands (200 - 500 K) 
4 micron band (700 -1200 K) 
4.8 micron band (400 - 800 K)  

Resolution < 0.05 K, linear quantization to 14 bits 

Accuracy < 0.5 K 3-sigma at 275 K 

Precision (NEdT) < 0.2 K 

Linearity >99% characterized to 0.1 % 

Spatial 

IFOV 60m 

MTF >0.65 at FNy 

Scan Type Push-Whisk 

Swath Width at 665-km altitude 935 km (+/- 34.4°) 

Cross Track Samples 10,000 (check) 

Swath Length  

Down Track Samples 256 

Band to Band Co-Registration 0.2 pixels (12 m) 

Pointing Knowledge 10 arcsec (0.5 pixels) (approximate value, currently under evaluation) 

Temporal 

Orbit Crossing Multiple 

Global Land Repeat Multiple 

On Orbit Calibration 

Lunar views 1 per month {radiometric} 

Blackbody views 1 per scan {radiometric} 

Deep Space views 1 per scan {radiometric} 

Surface Cal Experiments 2 (day/night) every 5 days {radiometric}  

Spectral Surface Cal Experiments 1 per year 

Data Collection 

Time Coverage Day and Night 

Land Coverage Land surface above sea level 

Water Coverage n/a  

Open Ocean n/a 

Compression 2:1 lossless 
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Figure 2: Modeled SBG NEdT versus scene temperature for the two MIR and six TIR bands with time delay 

integration (TDI). 

 

 

 

3 Theory and Methodology 

3.1 Midwave and Thermal Infrared Remote Sensing Background 

 The at-sensor measured radiance in the infrared region (4–15 µm, MIR: 3-5 µm, TIR: 8-

15 µm) consists of a combination of different terms from surface emission, solar reflection, and 

atmospheric emission and attenuation. The Earth-emitted radiance is a function of temperature and 

emissivity and gets attenuated by the atmosphere on its path to the satellite. The emissivity of an 

isothermal, homogeneous emitter is defined as the ratio of the actual emitted radiance to the 

radiance emitted from a black body at the same thermodynamic temperature (Norman and Becker 
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1995),  𝜖𝜆 = 𝑅𝜆 /𝐵𝜆 . The emissivity is an intrinsic property of the Earth’s surface and is an 

independent measurement of the surface temperature, which varies with irradiance and local 

atmospheric conditions. The emissivity of most natural Earth surfaces for the TIR wavelength 

ranges between 8 and 12 μm and, for a sensor with spatial scales <100 m, varies from ~0.7 to close 

to 1.0. Narrowband emissivities less than 0.85 are typical for most desert and semi-arid areas due 

to the strong quartz absorption feature (reststrahlen band) between the 8- and 9.5-μm range, 

whereas the emissivity of vegetation, water, and ice cover are generally greater than 0.95 and 

spectrally flat in the 3–15-μm range except for dry and senesced vegetation that can have 

emissivities range from 0.9-0.95 in the longer wavelengths above 10 μm. 

The atmosphere also emits radiation, of which some reaches the sensor directly as "path 

radiance," while some gets radiated to the surface (irradiance) and reflected back to the sensor, 

commonly  known as the reflected downwelling sky irradiance. One effect of the sky irradiance is 

the reduction of the spectral contrast of the emitted radiance, due to Kirchhoff's law. Assuming the 

spectral variation in emissivity is small (Lambertian assumption), and using Kirchhoff's law to 

express the hemispherical-directional reflectance as directional emissivity (𝜌𝜆 = 1 − 𝜖𝜆), The at-

sensor measured radiance in the infrared spectral region (3–15 µm) is a combination of three 

primary terms: the Earth-emitted radiance, reflected downwelling radiance (thermal + solar 

components), and total atmospheric path radiance (thermal + solar components).  

𝐿𝑜𝑏𝑠(𝜆, 𝜃) = 𝜏𝜆(𝜃) [𝜖𝜆𝐵(𝜆, 𝑇𝑠) +  𝜌𝜆 (𝐿𝑠
↓ (𝜆, 𝜃) + 𝐿𝑡

↓ (𝜆, 𝜃))] + 𝐿𝑡
↑ (𝜆, 𝜃) + +𝐿𝑠

↑ (𝜆, 𝜃)       (1) 

where: 𝐿(𝜆, 𝜃) = at-sensor radiance, 𝜆 is wavelength, 𝜃 is the satellite viewing angle, 𝜖𝜆  is the 

surface emissivity, 𝜌𝜆 is surface reflectance, 𝐵(𝜆, 𝑇𝑠) is the Planck function describing radiance 

emitted at surface temperature, 𝑇𝑠, 𝐿𝑠
↓  is the total (diffuse and direct) downwelling solar radiance,  



SBG LEVEL-2 ATBD  

11 

𝐿𝑡
↓  is the downwelling thermal irradiance, 𝜏𝜆(𝜃) is the atmospheric transmittance, 𝐿𝑠

↑ (𝜆, 𝜃) is the 

upward path solar radiance, and 𝐿𝑡
↑ (𝜆, 𝜃) is the upward thermal path radiance reaching the sensor.  

Reflected solar radiation in the midwave infrared (MIR, 3-5 µm) region is non-negligible 

for highly reflective surfaces and needs to be taken into account in the atmospheric correction. For 

example, Figure 3 shows that the solar contribution to at-sensor radiance is almost the same 

magnitude as the thermal component between 3-4 µm for highly reflective quartz sands (~1 

W/m2), while the solar component is negligible for a simulated vegetative surface (e.g. conifer). 

Typically the diffuse and direct solar beam terms are estimated and treated separately since the 

solar zenith angle has different effects on these terms. For example, with high solar zenith angles 

the solar beam at the surface decreases, but the solar diffuse irradiance term may increase. For 

most terrestrial surfaces the emissivity varies between 0.6 and 1 in the MIR, but values less than 

0.85 are mostly restricted to deserts. Even though there are significant spectral variations in this 

region, their BRDF anisotropic factor is small and on the order of 2%. As a result we can assume 

a single BRDF factor and Lambertian surface with isotropic reflection i.e. 𝜌𝜆 =
𝜌𝜆

𝜋
. 

The reflected thermal infrared (TIR, 8-15 µm) radiance term is generally smaller in magnitude 

(~10%) than the surface-emitted radiance but needs to be taken into account particularly over 

highly reflective surfaces and on humid days when atmospheric water vapor content is high. 

Because of the smaller sky irradiance contribution and generally low reflectances in the TIR region 

over most vegetated surfaces, we can also assume a Lambertian surface and use Kirchhoff's law 

to express the hemispherical-directional reflectance as directional emissivity i.e. 𝜌𝜆 =
1−𝜖𝜆

𝜋
. 

Equation (1) gives the at-sensor radiance for a single wavelength, 𝜆, while the measurement from 

a sensor is typically measured over a range of wavelengths, or band. The at-sensor radiance for a 

discrete band, 𝑖 , is obtained by weighting and normalizing the at-sensor spectral radiance 
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calculated by equation (1) with the sensor's spectral response function for each band, 𝑆𝑟𝜆 , as 

follows: 

𝐿𝑖(𝜃) =
∫ 𝑆𝑟𝜆(i) ∙ 𝐿𝜆(𝜃) ∙ dλ 

𝑆𝑟𝜆(i) ∙ dλ
              (2)  

Based on these assumptions we can express the total at-sensor radiance measured by a sensor for 

band i as: 

           𝐿𝑖(𝜃) = 𝜏𝑖(𝜃) [𝜖𝑖𝐵(𝑖, 𝑇𝑠) +  
1−𝜖𝑖

𝜋
(𝐿𝑠

↓ (𝑖, 𝜃) + 𝐿𝑡
↓ (𝑖, 𝜃))] + 𝐿𝑡

↑ (𝑖, 𝜃) + +𝐿𝑠
↑ (𝑖, 𝜃)              (3)                       

The atmospheric and solar terms (𝐿𝑠
↓ , 𝐿𝑡

↓ , 𝜏𝜆, 𝐿𝑠
↑ , 𝐿𝑡

↑) can be estimated with a suitable radiative 

transfer model such as MODTRAN (Berk et al. 2005; Kneizys et al. 1996) or RTTOV, using 

input atmospheric fields of air temperature, relative humidity, and geopotential height from 

either remote sounding data (e.g. IASI, AIRS), or from Numerical Weather Model (NWP) data 

(e.g. ECMWF, MERRA2, NCEP). For the atmospheric correction of MODIS and VIIRS Infared 

data, both temperature/emissivity separation algorithms used to produce the LST&E products 

(MOD21, VNP21) use the RTTOV model, which was found to be an order of magnitude faster 

in compute time than MODTRAN. The RTTOV model was developed by the European Center 

for Medium range Weather Forecasting (ECMWF) (Matricardi et al. 2004) and uses FORTRAN 

90 code with a spectral range in the visible/infrared from 0.4 – 50 µm. More detailed information 

on RTTOV is available in Matricardi (2004) and Bauer (2006).  

 

https://nwp-saf.eumetsat.int/site/software/rttov/


SBG LEVEL-2 ATBD  

13 

  

Figure 3:  Simulated top-of-atmosphere radiance at sensor for solar (red) and infrared (blue) radiance 

components in the 3–13 µm region including the total atmospheric transmittance (black). The left image shows 

an example for desert sand (quartz) while right image is a simulation for a forest (redwood conifer) both at 300 

K surface temperature and using a US standard atmosphere.   

To further speed up computational time a Look Up Table (LUT) approach can be 

implemented to estimate the solar components (𝐿𝑠
↓ , 𝐿𝑠

↑ ) based on input day of year, satellite zenith 

angle, and solar zenith angle. For the MOD21 and VNP21 TES algorithms, these LUT’s were 

calculated using MODTRAN runs with a step for satellite and solar zenith angles of 10 degrees 

for angles smaller than 30, and 5 degrees for angles larger, and up to 65 degrees for satellite and 

75 for solar angles. A step of one day per month for a year was used for the day of year 

constraint (i.e. solar constant changes).  

The approach for computing surface radiance is essentially a two-step process. First, the 

atmospheric state is characterized by obtaining atmospheric profiles of air temperature, water 

vapor, geopotential height, and ozone at the observation time and location of the measurement. 

Ideally the profiles should be obtained from a validated, mature product with sufficient spatial 

resolution and close enough in time with the ECOSTRESS observation to avoid interpolation 

errors. This is particularly important for the temperature and water profiles to ensure good 

accuracy. Absorption from other gas species such as CH4, CO, and N2O will not be significant  
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Figure 4: Simulated at sensor radiance components described in equation (1) in the MIR range (3-4.2 micron) 

for desert sand (left) and redwood conifer (right) for a surface at 300 K and US standard atmosphere. Note 

the large solar reflected component for desert sand, while for vegetation this component is negligible due to 

higher emissivity (low reflectance). For both surfaces, the downwelling thermal radiance and solar path 

radiances are the smallest components and account for less than 2% of total radiance. 

for the placement of the ECOSTRESS TIR bands. The second step is to input the atmospheric 

profiles to a radiative transfer model to estimate the atmospheric parameters defined previously. 

This method will be used on clear-sky pixels only, which will be classified using a cloud mask 

specifically tailored for ECOSTRESS data. Clouds result in strong attenuation of the thermal 

infrared signal reaching the sensor, and an attempt to correct for this attenuation will not be 

made. 

3.2  Radiative Transfer Model 

3.2.1 RTTOV 

 The Radiative Transfer for TOVS (RTTOV)  is a very fast radiative transfer model for 

nadir-viewing passive visible, infrared and microwave satellite radiometers, spectrometers and 

interferometers (Saunders et al. 1999). RTOV is a FORTRAN-90 code for simulating satellite 

radiances, designed to be incorporated within users' applications.  RTTOV was originally 

developed at ECMWF in the early 90's for TOVS (Eyre and Woolf 1988). Subsequently the 

https://nwp-saf.eumetsat.int/site/software/rttov/
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original code has gone through several developments (Matricardi et al. 2001; Saunders et al. 

1999), more recently within the EUMETSAT NWP Satellite Application Facility (SAF), of 

which RTTOV v11 is the latest version.  It is actively developed by ECMWF and UKMET.  

 A number of satellite sensors are supported from various platforms 

(https://nwpsaf.eu/deliverables/rtm/rttov_description.html). RTTOV has been sufficiently tested 

and validated and is conveniently fast for full scale retrievals (Matricardi 2009).  Given an 

atmospheric profile of temperature, water vapor and optionally other trace gases (for example 

ozone and carbon dioxide) together with satellite and solar zenith angles and surface 

temperature, pressure and optionally surface emissivity and reflectance, RTTOV will compute 

the top of atmosphere radiances in each of the channels of the sensor being simulated. Users can 

also specify the selected channels to be simulated.  

 Mathematically, in vector notation, given a state vector, x, which describes the 

atmospheric/surface state as a profile and surface variables the radiance vector, y, for all the 

channels required to be simulated is given by (Saunders et al. 1999): 

 y = H(x) (4) 

where H is the radiative transfer model, i.e. RTTOV (also referred to as the observation operator 

in data assimilation parlance). This is known as the 'direct' or 'forward' model. 

An important feature of the RTTOV model is that it not only performs the fast computation of 

the forward (or direct) clear-sky radiances but also the fast computation of the gradient of the 

radiances with respect to the state vector variables for the input state vector values.   The 

Jacobian matrix H which gives the change in radiance δy for a change in any element of the state 

vector δx assuming a linear relationship about a given atmospheric state x0: 

 δy = H(x0)δx (5) 

https://nwpsaf.eu/deliverables/rtm/rttov_description.html
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The elements of H contain the partial derivatives 
𝜕𝑦𝑖

𝜕𝑥𝑗
(

𝑑𝑦𝑖

𝑑𝑥𝑗
) where the subscript i refers to channel 

number and j to position in state vector. The Jacobian gives the top of atmosphere radiance 

change for each channel from each level in the profile given a unit perturbation at any level of 

the profile vectors or in any of the surface/cloud parameters. It shows clearly, for a given profile, 

which levels in the atmosphere are most sensitive to changes in temperature and variable gas 

concentrations for each channel.  

 In RTTOV the transmittances of the atmospheric gases are expressed as a function of 

profile dependent predictors. This parameterization of the transmittances makes the model 

computationally efficient.  The RTTOV fast transmittance scheme uses regression coefficients 

derived from accurate Line by Line computations to express the optical depths as a linear 

combination of profile dependent predictors that are functions of temperature, absorber amount, 

pressure and viewing angle (Matricardi and Saunders 1999). The regression coefficients are 

computed using a training set of diverse atmospheric profiles chosen to represent the range of 

variations in temperature and absorber amount found in the atmosphere (Chevallier 2000; 

Matricardi 2008, 2009; Matricardi and Saunders 1999).  The selection of the predictors is made 

according to the coefficients file supplied to the program. 

3.3 Atmospheric Profile Data 

 

 The general methodology for atmospherically correcting TIR data is based on the 

methods that were developed for the ASTER (Palluconi et al. 1999) and MODIS approaches 

(Hulley et al. 2012a). However, adjustments will be made by taking advantage of improved 

interpolation techniques and higher resolution Numerical Weather Prediction (NWP) model data.   
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Currently two options for atmospheric profile sources are available: 1) interpolation of data 

assimilated from NWP models, and 2) retrieved atmospheric geophysical profiles from remote-

sensing data. The NWP models use current weather conditions, observed from various sources 

(e.g., radiosondes, surface observations, and weather satellites) as input to dynamic mathematical 

models of the atmosphere to predict the weather. Data are typically output in 6-hour increments, 

e.g., 00, 06, 12, and 18 UTC. Examples include the Global Data Assimilation System (GDAS) 

product provided by the National Centers for Environmental Prediction (NCEP) 

 

Figure 5: Example profiles of Relative Humidity (RH) and Air Temperature from the NCEP GDAS product.  

 (Kalnay et al. 1990), the Modern Era Retrospective-analysis for Research and Applications 

(MERRA-2) product provided by the Goddard Earth Observing System Data Assimilation 

System Version 5.2.0 (GEOS-5.2.0) (Bosilovich et al. 2008), GEOS-5 Forward Processing (FP) 

Atmospheric Data Assimilation System (GEOS-5 ADAS), and the European Center for Medium-

Range Weather Forecasting (ECMWF), which is supported by more than 32 European states. 

Remote-sensing data, on the other hand, are available real-time, typically twice-daily and for 

clear-sky conditions. The principles of inverse theory are used to estimate a geophysical state 

(e.g., atmospheric temperature) by measuring the spectral emission and absorption of some 

known chemical species such as carbon dioxide in the thermal infrared region of the 
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electromagnetic spectrum (i.e. the observation). Examples of current remote sensing data include 

the Atmospheric Infrared Sounder (AIRS) (Susskind et al. 2003) and Moderate Resolution 

Imaging Spectroradiometer (MODIS) (Justice and Townshend 2002), both on NASA's Aqua 

satellite launched in 2002.  

 SBG will have a unique 12:30 am/pm overpass that does not overlap with current and 

likely future sounders (e.g. AIRS, CrIS, IASI) that usually have early afternoon overpass time 

(1:30 am/pm) and so the only feasible way to atmospherically correct the data at a given 

observation hour is to interpolate in space and time from NWP data. NWP data options available 

for SBG include the MERRA-2 and GEOS5 reanalyses products produced by the NASA Global 

Modeling and Assimilation Office (GMAO) and NOAA provided NWP data, e.g. NFS and 

NCEP. The likely choice for SBG will be the GEOS5-FP data that will provide consistency from 

ECOSTRESS. GEOS5-FP data provide the highest spatial (1/4 degree) and temporal (3 hourly) 

resolution and is provided in near real-time for end users. MERRA-2 data has a one month 

latency which would have complicated the processing system dynamics at the JPL science data 

system. The GEOS-5 FP Atmospheric Data Assimilation System (GEOS-5 ADAS) uses an 

analysis developed jointly with NOAA’s National Centers for Environmental Prediction 

(NCEP), which allows the Global Modeling and Assimilation Office (GMAO) to take advantage 

of the developments at NCEP and the Joint Center for Satellite Data Assimilation (JCSDA) 

(Lucchesi 2017). 

The atmospheric profiles are first interpolated in time to the SBG observation using the [00 

03 06 09 12 15 18 21] analysis observation hours using a constrained quadratic function as 

discussed in the following section. The GEOS5 data is then gridded to the SBG swath resolution 

using a bicubic interpolation approach. The SRTM Digital Elevation Model (DEM) available in  
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Table 4: Geophysical data available in the GEOS5-FP analyses product. Columns under Mandatory specify if 

the variables is needed for determining atmospheric correction parameters. 

GEOS5-FP Analyses Data (inst3_3d_asm_Np) 

Geophysical fields Mandatory 

for RTTOV? 

Available in 

GEOS5? 

Remarks 

time Time Yes Yes  

lat Latitude Yes Yes  

lon Longitude Yes Yes  

lev Pressure Yes Yes  

T Air Temperature Yes Yes  

QV Specific Humidity Yes Yes Specific humidity is 

converted into ppmv 

for input to RTTOV 

PS Surface Pressure Yes Yes  

skt Skin Temperature Yes No T value at the first 

valid level above 

surface is used 

t2 Temperature at 2 m Yes No T value at the first 

valid level above 

surface is used 

q2 Specific Humidity at 2 m Yes No Q value at the first 

valid level above 

surface is used 

lsm Land Sea Mask Yes No Auxiliary database 

SBG L1A GEO 

Data 

el Elevation Yes No Auxiliary database 

SBG L1A GEO 

Data 

tcw Total Column Water No No But calculated 

internally from QV 

levels, and used for 

L2 uncertainty 

estimation. 

Resolution 

Frequency: 3 hr analysis from 00:00 UTC 

Spatial: 3D Grid, 1/4 degree in latitude × 5/16 degree in longitude 

Dimensions: 1152 (longitude) x 721 (latitude), 42 pressure levels 

Granule size: 558 MB 
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the L1B product will be used to crop the profiles at the appropriate levels for each SBG pixel at 

native resolution. 

3.3.1 Profile Temporal Interpolation 

 

 The diurnal cycle of near surface air temperature oscillates almost sinusoidally between a 

minimum at sunrise and a maximum in the afternoon. This occurs primarily because the 

atmosphere is relatively transparent to the shortwave radiation from the sun and relatively 

opaque to the thermal radiation from the Earth and as a result the surface is warmed by a positive 

daytime net radiation, and cooled by a negative nighttime radiation balance (radiative cooling). 

The net radiation determines whether the temperature rises, falls, or remains constant. The peak 

in daily temperature generally occurs in the afternoon as the air continues to warm due to a 

positive net radiation that persists for a few hours after noon (temperature lag). Similarly, 

minimum daily temperatures generally occur substantially after midnight, and sometimes during 

early morning hours around dawn, since heat is lost all night long. This effect can be seen in 

Figure 5 which shows air temperature (left panels) and relative humidity (right panels) data from 

the NCEP GDAS product over Los Angeles, CA for the 0, 6, 12, 18 UTC and 0 UTC on the 

following day. The air temperature diurnal cycle near the surface (1000 mb) shows a maximum 

temperature around 5 pm local time (12 pm UTC) during the summertime (1 August 2004), and 

a minimum at 4 am local (12 am UTC). A quadratic fit (red line) to the 5 data points captures the 

sinusoidal diurnal pattern quite well with maximum difference of ~1 K from the linear fit (black 

line). The maximum diurnal variation at 1000 mb for this particular day was ~ 7 K, decreasing to 

~1 K above the boundary layer (850 mb), and on the order of a few degrees in the troposphere 

(250 mb). This indicates that a linear fit might be good enough above the boundary layer.  
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 This is particularly evident for the relative humidity (RH) diurnal cycle, where large 

differences can be seen between the linear and quadratic fits at 250 mb due to a double inflection 

point. RH is the amount of moisture in the air compared to what the air can "hold" at that 

temperature and is generally calculated in relation to saturated water vapor density. When the air 

can't "hold" all the moisture, then it condenses as dew. Because of this the diurnal variation in 

RH is approximately inverse to that of temperature. At about sunrise the RH is typically at a 

maximum and reaches a minimum in the afternoon hours. The annual variation of RH is largely 

depends upon the locality. At regions where the rainy season is in summer and winter is dry, the 

maximum RH occurs in summer and minimum in winter and at other regions maximum RH 

occurs in winter. Over oceans the RH reaches a maximum during the summertime. 
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Figure 6: An example showing temporal interpolation of air temperature (left panels) and relative humidity 

(right panels) data from the NCEP GDAS product over Los Angeles, CA at different atmospheric levels from 

surface to the stratosphere. A linear and a constrained quadratic fit is used for data at 0, 6, 12, 18 UTC and 0 

UTC on the following day. The results indicate that a quadratic fit is optimal for fitting air temperature data 

in the boundary layer and mid-troposphere, but that a linear fit is more representative at higher levels. This 

is also true for the relative humidity. 



SBG LEVEL-2 ATBD  

23 

3.3.2 Profile Vertical and Horizontal Interpolation 

 

A study has been conducted to develop and test different interpolation schemes using NWP 

data and evaluate their impact on the retrieved LST (Cook 2014). The methodologies have been 

developed and tested using only the NCEP North American Regional Reanalysis (NARR) data 

set defined over North America only (Mesinger et al. 2006). These methodologies will be 

adapted and used for interpolation of GEOS5 data required by SBG. The approach generates the 

radiative transfer parameters, 𝜏𝜆, 𝐿𝜆
↓  , and 𝐿𝜆

↑  (Eq. 1) at each elevation for each model grid point 

for the scene. Generating the radiative transfer parameters at a set of elevations at each grid point 

results in a three- dimensional (spatial and height) cube of data encompassing the entire scene. 

The radiative transfer parameters are linearly interpolated to the appropriate elevation at each of 

the model grid points, illustrated in Figure 7a, and these resulting parameters are interpolated to 

the appropriate pixel locations using Shepard’s inverse distance interpolation method, illustrated 

in Figure 7b. 

(a) 

 

(b) 

 

Figure 7: a) Illustration of interpolation in elevation. The black circles represent elevations at which the NWP 

profiles are defined. b) Illustration of spatial interpolation. The grid represents the layout of the pixels and 

the black circles the NWP points (not to scale). The radiative transfer parameters values at the four pertinent 

NWP points are interpolated to the location of the current pixel, represented by the gray circle. 
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3.4 Radiative Transfer Sensitivity Analysis 

 The accuracy of the atmospheric correction technique proposed relies on the accuracy of 

the input variables to the model, such as air temperature, relative humidity, and ozone. The 

combined uncertainties of these input variables need to be known if an estimate of the radiative 

transfer accuracy is to be estimated. These errors can be band dependent, since different channels 

have different absorbing features and they are also dependent on absolute accuracy of the input 

profile data at different levels. The final uncertainty introduced is the accuracy of the radiative 

transfer model itself; however, this is expected to be small.  

 To perform the analysis, four primary input geophysical parameters were input to 

MODTRAN 5.2, and each parameter was changed sequentially in order to estimate the 

corresponding percent change in radiance (Palluconi et al. 1999). These geophysical parameters 

were air temperature, relative humidity, and ozone. Two different atmospheres were chosen, a 

standard tropical atmosphere and a mid-latitude summer atmosphere. These two simulated 

atmospheres should capture realistic errors we expect to see in humid conditions. 

 Typical values for current NWP accuracies (e.g., GEOS5, ECMWF) of air temperature 

and relative humidity retrievals in the boundary layer were used for the perturbations: 1) air 

temperature of 2 K,  2) relative humidity of 20%, 3) ozone was doubled.  Table 4 shows the 

percent changes in simulated SBG brightness temperatures for bands MIR-1 (4.0 µm) and TIR 1 

(8.32 µm), 3 (9.07 µm), and 5 (10.3 µm) for changes in input geophysical parameters. SBG TIR 

band 1 falls closest to the strong water vapor absorption region below about 8 µm and is 

therefore most sensitive to perturbations in relative humidity. The temperature perturbations have 

similar effects for all bands with brightness temperature increases of 1-2 K for a +2K 

perturbation in tropospheric air temperature, but are lowest for TIR band 1 as a result of the 
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higher water vapor sensitivity. Doubling the ozone results in a much larger sensitivity for TIR 

band 3, since its band position around 9 microns falls within the ozone symmetrical normal 

vibration mode at 1103 cm-1 (~9 micron) in addition to the primary mode which is a large 

asymmetric stretch at 1042 cm-1 (9.6 micron) that can easily be seen as a large absorption 

feature (e.g. see Figure 1). Changing the aerosol visibility from rural to urban had a small effect 

on each band but was largest for band 5. Generally the radiance in the thermal infrared region is 

insensitive to aerosols in the troposphere so, for the most part, a climatology-based estimate of 

aerosols would be sufficient. However, when stratospheric aerosol amounts increase 

substantially due to volcanic eruptions, for example, then aerosols amounts from future NASA 

remote-sensing missions such as ACE and GEO-CAPE would need to be taken into account.   

 It should also be noted, as discussed in Palluconi et al. (1999), that in reality these types 

of errors may have different signs, change with altitude, and/or have cross-cancelation between 

the parameters. As a result, it is difficult to quantify the exact error budget for the radiative 

transfer calculation; however, what we do know is that the challenging cases will involve warm 

and humid atmospheres where distributions of atmospheric water vapor are the most uncertain.  

 

Table 5: Percent changes in simulated SBG brightness temperatures for bands MIR-1 (4.0 µm) and TIR 1 

(8.32 µm), 3 (9.07 µm), and 5 (10.3 µm) for changes in input geophysical parameters. 

Geophysical 

Parameter 

Parameter 

change 

% Change in Brightness Temperature (K) 

(Mid-lat Summer Atmosphere) 

% Change in Brightness Temperature (K) 

(Tropical) 

  MIR-1 TIR-1  TIR-3  TIR- 5  MIR-1 TIR-1  TIR-3  TIR-5 

Air 
Temperature 

+2 K 1.99 1.20 1.59 1.41 1.98 1.03 1.41 1.18 

Relative 
Humidity 

+20% -0.09 -1.41 -1.04 -1.30 -0.11 -1.74 -1.43 -1.79 

Ozone +100% -0.00 -0.05 -1.05 -0.25 -0.00 -0.05 -1.12 -0.23 
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3.5 Temperature and Emissivity Separation Approaches 

 The radiance in the TIR atmospheric window (8–13 µm) is dependent on the temperature 

and emissivity of the surface being observed. Even if the atmospheric properties (water vapor 

and air temperature) are well known and can be removed from equation (1), the problem of 

retrieving surface temperature and emissivity from multispectral measurements is still a non-

deterministic process. This is because the total number of measurements available (N bands) is 

always less than the number of variables to be solved for (emissivity in N bands and one surface 

temperature). Therefore, no retrieval will ever do a perfect job of separation, with the 

consequence that errors in temperature and emissivity may co-vary. If the surface can be 

approximated as Lambertian (isotropic) and the emissivity is assigned a priori from a land cover 

classification, then the problem becomes deterministic with only the surface temperature being 

the unknown variable. Examples of such cases would be over ocean, ice, or densely vegetated 

scenes where the emissivity is known and spectrally flat in all bands. Another deterministic 

approach is the single-band inversion approach. If the atmospheric parameters are known in 

equation (1), then the temperature can also be solved for using a single band, usually in the 

clearest region of the window (~11 µm). Deterministic approaches are usually employed with 

sensors that have two or three bands in the TIR region, while non-deterministic approaches are 

applied to multispectral sensors so that spectral variations in the retrieved emissivity can be 

related to surface composition and cover, in addition to retrieving the surface temperature. For 

ECOSTRESS, a non-deterministic approach will be used, as spectral emissivity will need to be 

determined physically, along with temperature, in order to help answer the science questions 

outlined previously in section 3. 



SBG LEVEL-2 ATBD  

27 

3.5.1 Deterministic Approaches 

3.5.1.1 Split-window Algorithms 

 The most common deterministic approach can be employed without having to explicitly 

solve the radiative transfer equation. Two or more bands are employed in the window region 

(typically 10.5–12 µm), and atmospheric effects are compensated for by the differential 

absorption characteristics from the two bands. This approach is used with much success over 

oceans to compute the SST (Brown and Minnett 1999), as the emissivity of water is well known 

(Masuda et al. 1988).  Variations of this method over land include the split-window (SW) 

approach (Coll and Caselles 1997; Prata 1994; Price 1984; Wan and Dozier 1996; Yu et al. 

2008), the multichannel algorithm (Deschamps and Phulpin 1980), and the dual-angle algorithm 

(Barton et al. 1989). Over land, the assumption is that emissivities in the split-window bands 

being used are stable and well known and can be assigned using a land cover classification map 

(Snyder et al. 1998). However, this assumption introduces large errors over barren surfaces 

where much larger variations in emissivity are found due to the presence of large amounts of 

exposed rock or soil often with abundant silicates (Hulley and Hook 2009a). Land cover 

classification maps typically use VNIR data for assignment of various classes. This method may 

work for most vegetation types and over water surfaces but, because VNIR reflectances 

correspond predominately to Fe oxides and OH- and not to the Si-O bond over barren areas, there 

is little or no correlation with silicate mineralogy features in thermal infrared data. This is why, 

in most classification maps, only one bare land class is specified (barren). This type of approach 

will not be used for the SBG standard algorithm over land, but may be employed over coastal 

oceans and deep oceans, for the following reasons:  



SBG LEVEL-2 ATBD  

28 

1. The emissivity of the land surface is in general heterogeneous and is dependent on many 

factors including surface soil moisture, vegetation cover changes, and surface compositional 

changes, which are not characterized by classification maps.  

2. Split-window algorithms are inherently very sensitive to measurement noise between bands. 

3. Classification leads to sharp discontinuities and contours in the data between different class 

types. This violates one of the goals of SBG in producing seamless images.  

4. Temperature inaccuracies are difficult to quantify over geologic surfaces where constant 

emissivities are assigned. 

3.5.1.2 Single-band Inversion 

 If the atmosphere is known, along with an estimate of the emissivity, then equation (1) 

can be inverted to retrieve the surface temperature using one band. Theoretically, any band used 

should retrieve the same temperature, but uncertainties in the atmospheric correction will result 

in subtle differences as different bands have stronger atmospheric absorption features than others 

which may be imperfectly corrected for atmospheric absorption. For example, a band near 8 µm 

will have larger dependence on water vapor, while the 9–10-µm region will be more susceptible 

to ozone absorption. Jimenez-Munoz and Sobrino (2010) applied this method to ASTER data by 

using atmospheric functions (AFs) to account for atmospheric effects. The AFs can be computed 

by the radiative transfer equation or empirically given the total water vapor content.  The clearest 

ASTER band (13 or 14) was used to retrieve the temperature, with the emissivity determined 

using an NDVI fractional vegetation cover approach. A similar procedure has been proposed to 

retrieve temperatures from the Landsat TIR band 6 on ETM+ and TM sensors (Li et al. 2004). 

The single-band inversion method will not be used for SBG for the following reasons: 
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1. One of the goals of SBG science will be to retrieve the spectral emissivity of geologic 

surfaces for compositional analysis. This will not be possible with the single-band approach, 

which assigns emissivity based on land cover type and vegetation fraction. 

2. Estimating emissivity from NDVI-derived vegetation cover fraction over arid and semi-arid 

regions will introduce errors in the LST because NDVI is responsive only to chlorophyll 

active vegetation, and does not correlate well with senescent vegetation (e.g., shrublands). 

3. Only one-band emissivity is solved for the single-band inversion approach. SBG will be a 

multispectral retrieval approach. 

3.5.2 Non-deterministic Approaches 

 In non-deterministic approaches, the temperature and emissivity is solved using an 

additional constraint or extra degree of freedom that is independent of the data source. These 

types of solutions are also rarely perfect because the additional constraint will always introduce 

an additional level of uncertainty, however, they work well over all surfaces (including arid and 

semi arid) and can automatically account for changes in the surface e.g. due to fire or moisture. 

First, we introduce two well-known approaches, the day/night and TISI algorithms, followed by 

an examination of the algorithms and methods that led up to establishment of the TES algorithm. 

3.5.2.1 Day/Night Algorithm 

 The constraint in the day/night algorithm capitalizes on the fact that the emissivity is an 

intrinsic property of the surface and should not change from day- to nighttime observations. The 

day/night algorithm is currently used to retrieve temperature/emissivity from MODIS data in the 

MOD11B1 product (Wan and Li 1997). The method relies on two measurements (day and night), 

and the theory is as follows: Two observations in N bands produces 2N observations, with the 

unknown variables being N-band emissivities, a day- and nighttime surface temperature, four 
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atmospheric variables (day and night air temperature and water vapor), and an anisotropic factor, 

giving N + 7 variables. In order to make the problem deterministic, the following conditions 

must be met: 2N≥N+7, or N≥7. For the MODIS algorithm, this can be satisfied by using bands 

20, 22, 23, 29, 31–33. Although this method is theoretically sound, the retrieval is complicated 

by the fact that two clear, independent observations are needed (preferably close in time) and the 

pixels from day and night should be perfectly co-registered. Errors may be introduced when the 

emissivity changes from day to night observation (e.g., due to condensation or dew), and from 

undetected nighttime cloud. In addition, the method relies on very precise co-registration 

between the day- and nighttime pixel.  

3.5.2.2 Temperature Emissivity Separation Approaches 

 During research activities leading up to the ASTER mission, the ASTER Temperature 

Emissivity Working Group (TEWG) was established in order to examine the performance of 

existing non-deterministic algorithms and select one suitable for retrieving the most accurate 

temperature and/or emissivity over the entire range of terrestrial surfaces. This lead to 

development of the TES algorithm, which ended up being a hybrid algorithm that capitalized on 

the strengths of previous algorithms. In Gillespie et al. (1999), ten inversion algorithms were 

outlined and tested, leading up to development of TES. For all ten algorithms, an independent 

atmospheric correction was necessary. The ten algorithms were as follows:  

1. Alpha-derived emissivity (ADE) method 

2. Classification method 

3. Day-Night measurement 

4. Emissivity bounds method 
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5. Graybody emissivity method 

6. Mean-MMD method (MMD) 

7. Model emissivity method 

8. Normalized emissivity method (NEM) 

9. Ratio Algorithm 

10. Split-window algorithm 

 In this document, we will briefly discuss a few of the algorithms but will not expand 

upon any of them in great detail. The day-night measurement (3), classification (2), and split-

window (10) algorithms have already been discussed in section 4.2.1.  A detailed description of 

all ten algorithms is available in Gillespie et al. (1999). The various constraints proposed in these 

algorithms either determine spectral shape but not temperature, use multiple observations (day 

and night), assume a value for emissivity and calculate temperature, assume a spectral shape, or 

assume a relationship between spectral shape and minimum emissivity.  

 The normalized emissivity method (NEM) removes the downwelling sky irradiance 

component by assuming an 𝜖𝑚𝑎𝑥 of 0.99. Temperature is then estimated by inverting the Planck 

function and a new emissivity found. This process is repeated until successive changes in the 

estimated surface radiances are small. This method in itself was not found to be suitable for 

ASTER because temperature inaccuracies tended to be high (>3 K) and the emissivities had 

incorrect spectral shapes. Other approaches have used a model to estimate emissivity at one 

wavelength (Lyon 1965) or required that the emissivity be the same at two wavelengths 

(Barducci and Pippi 1996). This introduces problems for multispectral data with more than 5 

bands.  
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 The ADE method (Hook et al. 1992; Kealy et al. 1990; Kealy and Hook 1993) is based 

on the alpha residual method that preserves emissivity spectral shape but not amplitude or 

temperature. The constraint introduced uses an empirical relationship between spectral contrast 

and average emissivity to restore the amplitude of the alpha-residual spectrum and to compute 

temperature. The average emissivity was used in the relationship to minimize band-to-band 

calibration errors. The TEWG used this key feature of the ADE method in TES, although the 

minimum emissivity instead of average emissivity was used in the empirical relationship 

(Matsunaga 1994). The ADE itself was not fully employed for two primary reasons as discussed 

in Gillespie et al. (1999): 1) ADE uses Wien's approximation, exp(x) - 1 = exp(x), which 

introduces a noticeable "tilt" in the residual spectra that gets transferred to the final emissivity 

spectra; and 2) This issue was easily fixed in the hybrid version of TES. 

 Lastly, the temperature-independent spectral indices (TISI) approach (Becker and Li 

1990) computes relative emissivities from power-scaled brightness temperatures. TISI, however, 

is band-dependent and only recovers spectral shape; furthermore, the values are non unique. To 

retrieve actual emissivities, additional information or assumptions are needed. Other algorithms, 

which only retrieve spectral shape, are the thermal log and alpha residual approach (Hook et al. 

1992) and spectral emissivity ratios (Watson 1992; Watson et al. 1990). Neither of these were 

considered because they do not recover temperature or actual emissivity values. 

 

4 Temperature Emissivity Separation (TES) Algorithm 

 

 The final TES algorithm proposed by the ASTER TEWG combined some core features 

from previous algorithms and, at the same time, improved on them. TES combines the NEM, the 

ratio, and the minimum-maximum difference (MMD) algorithm to retrieve temperature and a 
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full emissivity spectrum. The NEM algorithm is used to estimate temperature and iteratively 

remove the sky irradiance, from which an emissivity spectrum is calculated, and then ratioed to 

their mean value in the ratio algorithm. At this point, only the shape of the emissivity spectrum is 

preserved, but not the amplitude. In order to compute an accurate temperature, the correct 

amplitude is then found by relating the minimum emissivity to the spectral contrast (MMD). 

Once the correct emissivities are found, a final temperature can be calculated with the maximum 

emissivity value. Additional improvements involve a refinement of 𝜖𝑚𝑎𝑥 in the NEM module 

and refining the correction for sky irradiance using the 𝜀𝑚𝑖𝑛-MMD final emissivity and 

temperature values. Finally, a quality assurance (QA) data image is produced that partly depends 

on outputs from TES such as convergence, final 𝜖𝑚𝑎𝑥, atmospheric humidity, and proximity to 

clouds. More detailed discussion of QA is included later in this document. 

 Numerical modeling studies performed by the ASTER TEWG showed that TES can 

recover temperatures to within 1.5 K and emissivities to within 0.015 over most scenes, 

assuming well calibrated, accurate radiometric measurements (Gillespie et al. 1998). 

  

4.1 Data Inputs 
 

 Inputs to the TES algorithm are the surface radiance, 𝐿𝑠,𝑖, given by equation (4) (at-

sensor radiance corrected for transmittance and path radiance), and downwelling sky irradiance 

term, 𝐿𝜆
↓  , which is computed from the atmospheric correction algorithm using a radiative 

transfer model such as MODTRAN. Both the surface radiance and sky irradiance will be output 

as a separate product. The surface radiance is primarily used as a diagnostic tool for monitoring 

changes in Earth's surface composition. Before the surface radiance is estimated using equation 

(4), the accuracy of the atmospheric parameters, 𝐿𝜆
↓ , 𝜏𝜆(𝜃), 𝐿𝜆

↑ (𝜃), is improved upon using a 
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water vapor scaling (WVS) method (Tonooka 2005) on a band-by-band basis for each 

observation using an extended multi-channel/water vapor dependent (EMC/WVD) algorithm (for 

more details, see SBG Surface Radiance ATBD). 

4.2 TES Limitations 

 As with any retrieval algorithm, limitations exist that depend on measurement accuracy, 

model errors, and incomplete characterization of atmospheric effects. The largest source of 

inaccuracy currently for ASTER data is the residual effect of incomplete atmospheric correction. 

Measurement accuracy and precision contribute to less of a degree. This problem is compounded 

for graybodies, which have low spectral contrast and are therefore more prone to errors in 

"apparent" MMD, which is overestimated due to residual sensor noise and incomplete 

atmospheric correction. A threshold classifier was introduced by the TEWG to partly solve this 

problem over graybody surfaces. Instead of using the calibration curve to estimate 𝜀𝑚𝑖𝑛 from 

MMD, a value of 𝜀𝑚𝑖𝑛= 0.983 was automatically assigned when the spectral contrast or MMD in 

emissivity was smaller than 0.03 for graybody surfaces (e.g., water, vegetation). However, this 

caused artificial step discontinuities in emissivity between vegetated and arid areas.  

 At the request of users, two parameter changes were made to the ASTER TES algorithm 

on August 1, 2007, first described in Gustafson et al. (2006). Firstly, the threshold classifier was 

removed as it caused contours and artificial boundaries in the images that users could not tolerate 

in their analysis. The consequence of removing the threshold classifier was a smoother 

appearance for all images but at the cost of TES underestimating the emissivity of graybody 

scenes, such as water by up to 3% and vegetation by up to 2% (Hulley et al. 2008). The second 

parameter change removed the iterative correction for reflected downwelling radiation, which 
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also frequently failed due to inaccurate atmospheric corrections (Gustafson et al. 2006). Using 

only the first iteration resulted in improved spectral shape and performance of TES.   

4.3 TES Processing Flow 

 Figure 8 shows the processing flow diagram for the generation of the cloud masks, land-

leaving radiance, VNIR reflectances, and TES temperature and emissivity, while Figure 9 shows 

a more detailed processing flow of the TES algorithm itself. Each of the steps will be presented 

in sufficient detail in the following section, allowing users to regenerate the code. TES uses input 

image data of surface radiance, 𝐿𝑠,𝑖, and sky irradiance, 𝐿𝜆
↓ , to solve the TIR radiative transfer 

equation. The output images will consists of seven emissivity images (𝜖𝑖) corresponding to SBG 

MIR band 1 and TIR bands 1-6, and one surface temperature image (T). Emissivity will not be 

retrieved for MIR band 2 (4.8 micron) due to its strong CO2 absorption features. 



SBG LEVEL-2 ATBD  

36 

 

Figure 8. Flow diagram showing all steps in the retrieval process in generating the SBG land surface 

temperature and emissivity product starting with thermal infrared (TIR) at-sensor radiances and progressing 

through atmospheric correction, cloud detection, and the temperature emissivity separation (TES) algorithm.  
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Figure 9. Flow diagram of the temperature emissivity separation (TES) algorithm in its entirety, including 
the NEM, RATIO and MMD modules. Details are included in the text, including information about the 
refinement of 𝝐𝒎𝒂𝒙. 
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4.4 NEM Module 

 The normalized emissivity method (NEM) builds upon the model emissivity algorithm 

(Lyon 1965) by allowing the initial 𝜖𝑚𝑎𝑥 value to be consistent for all wavelengths. The role of 

NEM is to compute the surface kinetic temperature, T, and a correct shape for the emissivity 

spectrum. An initial value of 0.99 is set for 𝜖𝑚𝑎𝑥, which is typical for most vegetated surfaces, 

snow, and water. For geologic materials such as rocks and sand, 𝜖𝑚𝑎𝑥 values are set lower than 

this, typically 0.96, and this value remains fixed. For all other surface types, a modification to the 

original NEM allows for optimization of 𝜖𝑚𝑎𝑥 using an empirically based process. For the 

majority of materials in the ECOSTRESS spectral library, a typical range for 𝜖𝑚𝑎𝑥 is 

0.94<𝜖𝑚𝑎𝑥<1.0. Therefore, for a material at 300 K, the maximum errors that NEM temperatures 

should have are ~±1.5 K, assuming the reflected sky irradiance has been estimated correctly. 

4.5 Removing Downwelling Sky Irradiance 

 Generally the effects of sky irradiance are small with typical corrections of <1 K 

(Gillespie et al. 1998). However, the contribution becomes larger for pixels with low emissivity 

(high reflectance) or in humid conditions when the sky is warmer than the surface. Over 

graybody surfaces (water and vegetation), the effects are small because of their low reflectivity 

in all bands. The first step of the NEM module is to estimate ground-emitted radiance, which is 

found by subtracting the reflected sky irradiance from the surface radiance term: 

 𝑅𝑖 = 𝐿𝑠,𝑖
′ − (1 − 𝜖𝑚𝑎𝑥) 𝐿𝜆

↓  (6) 

The NEM temperature, which we call 𝑇𝑁𝐸𝑀, is then estimated by inverting the Planck function 

for each band using 𝜖𝑚𝑎𝑥 and the ground-emitted radiance and then taking the maximum of 

those temperatures. The maximum temperature will most likely be closest to the actual surface 

temperature in the presence of uncompensated atmospheric effects.  
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𝑇𝑖 =
𝑐2

𝜆𝑖
(𝑙𝑛 (

𝑐1𝜖𝑚𝑎𝑥

𝜋𝑅𝑖𝜆𝑖
5 + 1))

−1

        (7) 

 

 𝑇𝑁𝐸𝑀 = max (𝑇𝑖)                (8) 

The NEM emissivity spectrum is then calculated as the ratio of emitted radiance to that of a 

blackbody with a temperature estimated by 𝑇𝑁𝐸𝑀: 

 
𝜖𝑖

′ =
𝑅𝑖

𝐵𝑖(𝑇𝑁𝐸𝑀)
                (9) 

The new emissivity spectrum is then used to re-calculate 𝑅𝑖
′ = 𝐿𝑠,𝑖

′ − (1 − 𝜖𝑖
′) 𝐿𝜆

↓ , and the process 

is repeated until convergence, which is determined if the change in 𝑅𝑖 between steps is less than 

a set threshold, 𝑡2, which is set as the radiance equivalent to NEΔT of the sensor. The process is 

stopped if the number of iterations exceeds a limit N, set to 12. Execution of the NEM module is 

also aborted if the slope of 𝑅𝑖 versus iteration, 𝑐, increases such that |∆2𝑅′/∆𝑐2| > 𝑡1, where 𝑡1 is 

also set to radiance equivalent of NEΔT for the sensor (still to be determined for SBG). In this 

case, correction is not possible, TES is aborted, and NEM values of 𝜖𝑖 and 𝑇𝑁𝐸𝑀 are reported in 

the QA data plane, along with an error flag. TES is also aborted and an error flag recorded if, for 

any iteration, the values of 𝜖𝑖 fall out of reasonable limits, set to 0.5 < 𝜖𝑖 < 1.0. See Figure 11 

for a detailed description of these steps.  

4.6 Refinement of 𝛜𝐦𝐚𝐱 

 Most pixels at SBG resolution (60 m) will contain a mixed cover type consisting of 

vegetation and  soil, rock and water.  The effective maximum emissivity for such pixels will 

therefore vary across the scene and depend on the fractional contribution of each cover type. For 

these cases, the initial 𝜖𝑚𝑎𝑥 = 0.99 may be set to high and refinement of 𝜖𝑚𝑎𝑥 is necessary to 
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improve accuracy of 𝑇𝑁𝐸𝑀. The optimal value for 𝜖𝑚𝑎𝑥 minimizes the variance, 𝜈, of the NEM 

calculated emissivities, 𝜖𝑖. The optimization of 𝜖𝑚𝑎𝑥 is only useful for pixels with low emissivity 

contrast (near graybody surfaces) and therefore is only executed if the variance for 𝜖𝑚𝑎𝑥= 0.99 is 

less than an empirically determined threshold (e.g., 𝑉1 = 1.7 × 10−4 for ASTER ) (Gillespie et 

al. 1998). If the variance is greater than 𝑉1, then the pixel is assumed to predominately consist of  

either rock or soil. For this case, 𝜖𝑚𝑎𝑥 is reset to 0.96, which is a good first guess for most rocks 

and soils in the ECOSTRESS spectral library, which typically fall between the 0.94 and 0.99 

range. If the first condition is met, and the pixel is a near-graybody, then values for 𝜖𝑚𝑎𝑥 of 0.92, 

0.95, 0.97, and 0.99 are used to compute the variance for each corresponding NEM emissivity 

spectrum. A plot of variance 𝜈 versus each 𝜖𝑚𝑎𝑥 value results in an upward-facing parabola with 

the optimal 𝜖𝑚𝑎𝑥 value determined by the minimum of the parabola curve in the range 0.9 <

𝜖𝑚𝑎𝑥 < 1.0. This minimum is set to a new 𝜖𝑚𝑎𝑥value, and the NEM module is executed again to 

compute a new 𝑇𝑁𝐸𝑀. Further tests are used to see if a reliable solution can be found for the 

refined 𝜖𝑚𝑎𝑥. If the parabola is too flat, or too steep, then refinement is aborted and the original 

𝜖𝑚𝑎𝑥 value is used. The steepness condition is met if the first derivative (slope of 𝜈 vs. 𝜖𝑚𝑎𝑥) is 

greater than a set threshold (e.g., 𝑉2 = 1.0 × 10−3 for ASTER) and the flatness conditions is met 

if the second derivative is less than a set threshold (e.g., 𝑉3 = 1.0 × 10−3 for ASTER). Finally, if 

the minimum 𝜖𝑚𝑎𝑥 corresponds to a very low 𝜈, then the spectrum is essentially flat (graybody) 

and the original 𝜖𝑚𝑎𝑥 = 0.99 is used. This condition is met if 𝜈𝑚𝑖𝑛 < 𝑉4 (e.g. 𝑉2 = 1.0 × 10−4 

for ASTER). These thresholds will need to be refined for the SBG bands and determined 

empirically.  



SBG LEVEL-2 ATBD  

41 

4.7 Ratio Module 

 In the ratio module, the NEM emissivities are ratioed to their average value to calculate a 

𝛽𝑖 spectrum as follows: 

 𝛽𝑖 =
𝜖𝑖

𝜖̅
 (10) 

Typical ranges for the 𝛽𝑖 emissivities are 0.75 < 𝛽𝑖 < 1.32, given that typical emissivities range 

from 0.7 to 1.0. Errors in the 𝛽𝑖 spectrum due to incorrect NEM temperatures are generally 

systematic.  

4.8 MMD Module 

 In the minimum-maximum difference (MMD) module, the 𝛽𝑖 emissivities are scaled to 

an actual emissivity spectrum using information from the spectral contrast or MMD of the 𝛽𝑖 

spectrum. The MMD can then be related to the minimum emissivity, 𝜖𝑚𝑖𝑛, in the spectrum using 

an empirical relationship determined from lab measurements of a variety of different spectra, 

including rocks, soils, vegetation, water, and snow/ice. From 𝜖𝑚𝑖𝑛, the actual emissivity 

spectrum can be found by re-scaling the 𝛽𝑖 spectrum. First, the MMD of the 𝛽𝑖 spectrum is found 

by: 

 𝑀𝑀𝐷 = max(𝛽𝑖) − min (𝛽𝑖) (11) 

Then MMD can be related to 𝜖𝑚𝑖𝑛 using a power-law relationship: 

 𝜖𝑚𝑖𝑛 = 𝛼1 − 𝛼2𝑀𝑀𝐷𝛼3, (12) 

where 𝛼𝑗 are coefficients that are obtained by regression using lab measurements. For the six 

SBG TIR bands between 8 and 12 µm (shown in Figure 1), the values for the coefficients were 

calculated as 𝛼1= 0.9929, 𝛼2 = 0.7453, and 𝛼3 = 0.8149. The TES emissivities are then 

calculated by re-scaling the 𝛽𝑖 emissivities: 
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 𝜖𝑖
𝑇𝐸𝑆 = 𝛽𝑖 (

𝜖𝑚𝑖𝑛

min (𝛽𝑖)
) (13) 

For pixels with low spectral contrast (e.g., graybody surfaces), the accuracy of MMD 

calculated from TES is compromised and approaches a value that depends on measurement error 

and residual errors from incomplete atmospheric correction. For ASTER, which has a NEΔT of 

0.3 K at 300 K, measurement error contributes to the apparent contrast, and a method was 

explored to correct the apparent MMD using Monte Carlo simulations. For SBG (NEΔT of ~0.1-

0.2 K per band), we expect measurement errors to be minimal and atmospheric effects to be the 

largest contribution to MMD errors. A further problem for graybody surfaces is a loss of 

precision for low MMD values. This is due to the shape of the power-law curve of 𝜖𝑚𝑖𝑛 vs. 

MMD at low MMD values, where small changes in MMD can lead to large changes in 𝜖𝑚𝑖𝑛. To 

address these issues, the ASTER TEWG initially proposed a threshold classifier for graybody 

surfaces. If MMD<0.03, the value of 𝜖𝑚𝑖𝑛 in equation (13) was set to 0.983, a value typical for 

water and most vegetated surfaces. However, this classification was later abandoned as it 

introduced large step discontinuities in most images (e.g., from vegetation to mixed-cover types).  

The consequence of removing the threshold classifier was that over graybody surfaces 

errors in emissivity could range from 0.01 to 0.05 (0.5 K  to 3 K) due to measurement error and 

residuals errors from atmospheric correction (Gustafson et al. 2006; Hulley and Hook 2009b). 

For SBG, we expect to use original TES without classification and use the WVS method to 

correct the atmospheric parameters on a pixel-by-pixel basis.  

 For bare surfaces (rocks, soils, and sand), the error in NEM calculated T may be as much 

as 2–3 K, assuming a surface at 340 K due to the fixed assumption of 𝜖𝑚𝑎𝑥 = 0.96. This error can 

be corrected by recalculating T using the TES retrieved maximum emissivity, 𝜖𝑚𝑎𝑥
𝑇𝐸𝑆 , and the  



SBG LEVEL-2 ATBD  

43 

atmospherically corrected radiances, 𝑅𝑖. The maximum emissivity used as correction for reflected 

𝐿𝜆
↓  will be minimal.  

 

𝑇𝑇𝐸𝑆 =
𝑐2

𝜆𝑚𝑎𝑥
(𝑙𝑛 (

𝑐1𝜖𝑚𝑎𝑥
𝑇𝐸𝑆

𝜋𝑅𝑖𝜆𝑚𝑎𝑥
5 + 1))

−1

 (14) 

An example LST and emissivity simulated SBG scene are shown in Figures 10 and 11 

respectively. The SBG scenes was simulated from MASTER data acquired on 30 January 2018 

over Kilauea, Hawaii. TES was first applied to similar MASTER bands as SBG to retrieve the 

LST and emissivity, and then a regression based technique was used to adjust the MASTER 

emissivity bands for the equivalent SBG bands shown in Figure 1. Bare areas of rock and soil 

and the Kilauea lava flow on the southeast side have emissivities <0.85 in the 9 micron band, 

while graybody surfaces such as dense vegetation or water have higher emissivities >0.95. 

Figure 11 shows a simulated SBG emissivity scene for the same MASTER line for band TIR-3 

(9 micron).  

 

Figure 10. SBG simulated LST generated from a MASTER scene on 30 January 2018 over Mauna Loa and 

Kilauea volcanoes in Hawaii. 
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Figure 11. SBG simulated emissivity for band TIR-3 (9 micron) from a MASTER scene on 30 January 2018 

over Mauna Loa and Kilauea volcanoes in Hawaii. 

 

In the original ASTER algorithm, a final correction is made for sky irradiance using the TES 

temperature and emissivities; however, this was later removed, as correction was minimal and 

influenced by atmospheric correction errors. This additional correction will not be used for SBG.  

4.9 MMD vs. 𝛜𝐦𝐢𝐧 Regression 

 The relationship between MMD and 𝜖𝑚𝑖𝑛 is physically reasonable and is determined using 

a set of laboratory spectra in the ECOSTRESS spectral library v2.0 (Meerdink et al. 2019) and 

referred to as the calibration curve. The original ASTER regression coefficients were determined 

from a set of 86 laboratory reflectance spectra of rocks, soils, water, vegetation, and snow supplied 

by J.W. Salisbury from Johns Hopkins University. One question that needed to be answered was 

whether using a smaller or larger subset of this original set of spectra changed the results in any 

manner. Establishing a reliable MMD vs. 𝜖𝑚𝑖𝑛 relationship with a subset of spectral representing 

all types of surfaces is a critical assumption for the calibration curve. This assumption was tested 
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using various combinations and numbers of different spectra (e.g., Australian rocks, airborne data, 

and a subset of 31 spectra from Salisbury), and all yielded very similar results to the original 86 

spectra.  

 For SBG, the original 86 spectra were updated to include additional sand spectra used to 

validate the North American ASTER Land Surface Emissivity Database (NAALSED) (Hulley 

and Hook 2009b)  and additional spectra for vegetation from the MODIS spectral library and 

ASTER spectral library v2.0, giving a total of 150 spectra. The data were convolved to the 

nominal SBG bands and 𝜖𝑚𝑖𝑛 and  𝛽𝑖 spectra calculated for each sample. The MMD for each 

spectra was then calculated from the  𝛽𝑖 spectra and regressed to the 𝜖𝑚𝑖𝑛 values. The 

relationship follows a simple power law given by equation (7), with regression coefficients 𝛼1= 

0.9929, 𝛼2 = 0.7453, and 𝛼3 = 0.8149, and 𝑅2 = 0.989. Figure 12 shows the power-law 

relationship between MMD and 𝜖𝑚𝑖𝑛 using the 150 lab spectra. 

 

Figure 12. SBG calibration curve of minimum emissivity vs. min-max difference (MMD). The lab data (crosses) 

are computed from 150 spectra consisting of a broad range of terrestrial materials (rocks, sand, soil, water, 

vegetation, and ice). 
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5 Uncertainty Analysis 
NASA has identified a major need to develop long-term, consistent products valid across 

multiple missions, with well-defined uncertainty statistics addressing specific Earth-science 

questions. These products are termed Earth System Data Records (ESDRs), and LST&E has 

been identified as an important ESDR. Currently a lack of understanding of LST&E uncertainties 

limits their usefulness in land surface and climate models. In this section we present results from 

the Temperature Emissivity Uncertainty Simulator (TEUSim) that has been developed to 

quantify and model uncertainties for a variety of TIR sensors and LST algorithms (Hulley et al. 

2012b). Using the simulator, uncertainties were estimated for the L2 products of SBG using a 6-

band TES approach. These uncertainties will be parameterized according to view angle and 

estimated total column water vapor for eventual application to real-time SBG L2 data on a pixel 

by pixel basis. 

5.1 The Temperature and Emissivity Uncertainty Simulator (TEUSim) 

The TEUSim was developed for simulating LST&E uncertainties from various sources of 

error for the TES and SW algorithms in a rigorous manner for any appropriate TIR sensor (see 

Figure 13). These include random errors (e.g. instrument noise), systematic errors (e.g. 

calibration), and spatio-temporally correlated errors (e.g. atmospheric correction). The 

MODTRAN v6 radiative transfer model is used for the simulations with a global set of 

radiosonde profiles and surface emissivity spectra representing a broad range of atmospheric 

conditions and a wide variety of surface types. This approach allows the retrieval algorithm to be 

easily evaluated under realistic but challenging combinations of surface/atmospheric conditions. 

The TEUSim is designed to separately quantify error contributions from the following potential 

sources: 
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Figure 13. Schematic of the Temperature Emissivity Uncertainty Simulator (TEUSim) forward (left) and 

inverse (right) models describing the inputs, outputs and general flow for generating the LST error budget. 

 

1. Instrument noise (NEdT)  

2. Algorithm (Model) 

3. Atmospheric correction  

4. Undetected cloud  

5. Calibration 

The results presented in this study will focus on the first three of these error sources: instrument 

noise, algorithm, and atmospheric correction. The effects of cloud and calibration issues will be 

quantified in orbit once enough data is acquired. 
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5.2 Atmospheric Profiles 

The TEUSim uses a global simulation model with input atmospheric data from the 

SeeBor V5.0 radiosounding database (Borbas et al. 2005). The SeeBor data consist of 15,704 

profiles of uniformly distributed global atmospheric soundings temperature, moisture, and ozone 

at 101 pressure levels for clear sky conditions, acquired both day and night in order to capture 

the full-scale natural atmospheric variability (Figure 14). 

 

Figure 14. Locations of the 15,704 day and nighttime atmospheric soundings of temperature, moisture, and 

ozone of  from the SeeBor V5.0 radiosounding database. 

5.3 Radiative Transfer Model 

In TEUSim the latest version of MODTRAN (v6) was used for the radiative transfer 

calculations. MODTRAN 6 uses an improved molecular band model, termed the Spectrally 

Enhanced Resolution MODTRAN (SERTRAN), which has a much finer spectroscopy (0.1 cm-1) 

than previous versions (1–2 cm-1). This results in higher accuracy in modeling of band 

absorption features in the longwave TIR window regions, and comparisons with line-by-line 

models has shown good accuracy (Berk et al. 2005).  
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5.4 Surface End-Member Selection 

A selection of emissivity spectra from the ECOSTRESS Spectral Library (ECOlib) 

(Meerdink et al. 2019) were used to define the surface spectral emission term in MODTRAN. A 

total of 59 spectra were chosen based on certain criteria and grouped into four surface 

classifications: rocks (20), soils (26), sands (9), and graybodies (4). Spectra were chosen to 

represent the most realistic effective emissivities observed at the remote sensing scales. 

For rocks, certain spectra were removed prior to processing based on two considerations. 

First, samples that rarely exist as kilometer-scale, sub-aerial end-member exposures on the 

Earth’s surface such as pyroxenite or serpentinite were eliminated. Second, and in parallel, 

spectrally similar samples were eliminated. Spectral similarity was defined by the location, 

shape, and magnitude of spectral features between 7 and 13 µm. All eliminated samples are 

represented in the final selection through spectrally-similar end-member types. The final rock set 

included 20 spectra.  

ECOlib includes 49 soil spectra classified according to their taxonomy, such as Alfisol 

(9), Aridisol (14), Entisol (10), Inceptisol (7) and Mollisol (9). Filtering in this case was based 

solely on spectral similarity between each taxonomy type. The final soils set included 26 soil 

spectra.  

A set of nine emissivity spectra collected in separate field campaigns during 2008 over 

large homogeneous sand dune sites in the southwestern United States in support of validation for 

the NAALSED v2.0 (Hulley et al. 2009a) were used for sands. The sand samples consist of a 

wide variety of different minerals including quartz, magnetite, feldspars, gypsum, and basalt 

mixed in various amounts, and represent a broad range of emissivities in the TIR as detailed in 

Hulley et al. (2009a).  
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To represent graybody surfaces, spectra of distilled water, ice, snow, and conifer were 

chosen from ASTlib. Four spectra were sufficient to represent this class since graybody surfaces 

exhibit low contrast and high emissivities. It should be noted that certain types of man-made 

materials were not included, such as aluminum roofs that do not occur at the spatial resolution of 

these sensors, but should be included for higher-spatial-resolution data sets such as those 

provided by airborne instruments. 

5.5 Radiative Transfer Simulations 

In the TEUSim, each radiosonde profile for each set of end-member spectra can be used 

as an input to MODTRAN, or a subset of particular types of atmospheric data and surface 

spectra may be used. A seasonal rural aerosol is typically assumed with standard profiles for 

fixed gases within MODTRAN. Gaussian viewing angles of 0°, 11.6°, 26.1° and 40.3° were used 

to represent the viewing geometry of SBG that will not exceed 35°. The downward sky 

irradiance, 𝐿𝜆(𝜃), can be modeled using the path radiance, transmittance, and view angle. To 

simulate the downward sky irradiance in MODTRAN, the sensor target is placed a few meters 

above the surface, with surface emission set to zero, and view angle set at the prescribed angles 

above. In this configuration, the reflected downwelling sky irradiance is estimated for a given 

view angle. The total sky irradiance contribution for band i is then calculated by summing the 

contribution of all view angles over the entire hemisphere: 

 

𝐿𝑖
↓ = ∫ ∫ 𝐿𝑖

↓(𝜃) ∙ 𝑠𝑖𝑛𝜃 ∙ 𝑐𝑜𝑠𝜃 ∙ 𝑑𝜃 ∙ 𝑑𝛿

𝜋/2

0

2𝜋

0

 (15) 

where 𝜃 is the view angle and 𝛿 is the azimuth angle. To minimize computational time, the 

downward sky irradiance is first modeled as a non-linear function of path radiance at nadir view 

using (17) (Tonooka 2001): 
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 𝐿𝑖
↓(𝛾) = 𝑎𝑖 + 𝑏𝑖 ∙ 𝐿𝑖

↑(0, 𝛾) + 𝑐𝑖𝐿𝑖
↑(0, 𝛾)2 (16) 

where 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 are regression coefficients, and 𝐿𝑖
↑(0, 𝛾) is computed by: 

 
𝐿𝑖

↑(0, 𝛾) = 𝐿𝑖
↑(𝜃, 𝛾) ∙

1 − 𝜏𝑖(𝜃, 𝛾)𝑐𝑜𝑠𝜃

1 − 𝜏𝑖(𝜃, 𝛾)
      (17) 

Equations (17) and (18) were used to estimate the downwelling sky irradiance in the TEUSim 

results using pre-calculated regression coefficients for SBG bands. The reflected sky irradiance 

term is generally smaller in magnitude than the surface-emitted radiance, but needs to be taken 

into account, particularly on humid days when the total atmospheric water vapor content is high. 

The simulated LST is based on the surface air temperature of each radiosonde profile:  

 𝐿𝑆𝑇𝑠𝑖𝑚 = 𝑇𝑎𝑖𝑟 + 𝛿𝑇      (18) 

where 𝐿𝑆𝑇𝑠𝑖𝑚 and 𝑇𝑎𝑖𝑟 are the simulated LST and surface air temperature. Galve et al. (2008) 

found a mean 𝛿𝑇 of +3 K and standard deviation of 9 K from a global study of surface-air 

temperature differences over land in the MODIS MOD08 and MOD11 products. We therefore 

defined 𝛿𝑇 as a random distribution with a mean of 3 K and a standard deviation of 9 K for each 

profile input to MODTRAN. 

The TES algorithm uses surface radiance as input, which can be derived from the 

atmospheric transmittance 𝜏𝜆(𝜃), TOA radiance 𝐿𝜆(𝜃), path radiance 𝐿𝜆
↑ (𝜃), and downward sky 

irradiance 𝐿𝜆
↓ (𝜃). To calculate the various sources of error in LST&E retrievals from TES, these 

variables were simulated for the following conditions:  

1. Perfect atmosphere (i.e., exact inputs): 𝐿𝜆(𝜃) and atmospheric parameters 𝜏𝜆(𝜃), 𝐿𝜆
↑ (𝜃), 

and 𝐿𝜆
↓ (𝜃) calculated using a given profile, surface type and viewing angle;  
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2. Imperfect atmosphere (i.e., inputs with errors): 𝐿𝜆
′ (𝜃), 𝜏𝜆

′  (𝜃), 𝐿𝜆
′↑(𝜃), and 𝐿𝜆

′↓(𝜃) calculated 

using perturbed temperature and humidity profiles to simulate real ‘imperfect’ input data 

(see next section for assumed errors used on the atmospheric profiles).  

To further simulate the effects of instrument noise, the above two conditions were run by further 

adding random noise to the radiances based on a noise model that describes the sensor’s noise 

equivalent delta temperature (NEdT). 

5.6 Error Propagation 

The total LST uncertainty for the TES algorithm based on model, atmospheric and 

measurement noise contributions can be written as: 

 𝛿𝐿𝑆𝑇𝑇𝐸𝑆 = [𝛿𝐿𝑆𝑇𝑀 + 𝛿𝐿𝑆𝑇𝐴 + 𝛿𝐿𝑆𝑇𝑁]1/2 (19) 

where 𝛿𝐿𝑆𝑇𝑀 is the model error due to assumptions made in the TES calibration curve, 𝛿𝐿𝑆𝑇𝐴 is 

the atmospheric error, and 𝛿𝐿𝑆𝑇𝑁 is the error associated with measurement noise. These errors 

are assumed to be independent. 

To calculate the separate contributions from each of these errors let us first denote the 

simulated atmospheric parameters as x = [𝜏𝜆(𝜃), 𝐿𝜆
↑ (𝜃), 𝐿𝜆

↓ (𝜃)] and simulated observed radiance 

parameter as 𝑦 = 𝐿𝜆(𝜃). Both 𝑥 and 𝑦 are required to estimate the surface radiance that is input 

to the TES algorithm. In reality, however, the input parameters 𝑥 are not known explicitly, but 

are associated with some error, 𝛿𝑥, which we write as �̂� = 𝑥 + 𝛿𝑥. Similarly, the observed 

radiances have an associated noise based on the NET of the specific sensor, which we will  

denote by �̂�.  

To characterize the retrieval (or model) error, we express the TES algorithm as a function 

based on perfect input parameters 𝑥 and 𝑦 such that 𝐿𝑆𝑇𝑇𝐸𝑆 = 𝑓(𝑥, 𝑦). The model error, 𝛿𝐿𝑆𝑇𝑀, 

i.e.,  
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 𝛿𝐿𝑆𝑇𝑀 = E[(𝑓(𝑥, 𝑦) − LSTsim)2 |𝑥, 𝑦]1/2      (20) 

where LSTsim is the simulated LST used in the MODTRAN simulations, and 𝐸[∙ |𝑥, 𝑦] denotes 

the mean-square error between the retrieved and simulated LST for inputs 𝑥 and 𝑦.  

In order to simulate an atmospheric error, the input atmospheric profiles were adjusted to 

simulate real data by applying random errors in the water vapor retrievals of between 10–20% 

that is typical for NWP models and retrieved water vapor estimates (Seemann et al. 2006). 

Accordingly, the relative humidity profiles were adjusted by scaling factors ranging from 0.8 to 

1.2 (20%) in MODTRAN using a uniformly distributed random number generator. The 

atmospheric error can then be written as the difference between TES using perfect atmospheric 

inputs, 𝑥 and imperfect inputs, �̂�: 

 
𝛿𝐿𝑆𝑇𝐴 = E [(𝑓(�̂�, 𝑦) − 𝑓(𝑥, 𝑦))

2
 |𝑥, 𝑦]

1/2

      (21) 

And lastly the error due to measurement noise can be written as the difference between 

TES with perfect simulated TOA radiances, 𝑦 and TES with noisy radiances, �̂�, assuming perfect 

atmospheric inputs, 𝑥: 

 
𝛿𝐿𝑆𝑇𝑁 = E [(𝑓(𝑥, �̂�) − 𝑓(𝑥, 𝑦))

2
 |𝑥, 𝑦]

1/2

              (22) 

Since the TES algorithm simultaneously retrieves the LST and spectral emissivity, the above 

equations also apply to the corresponding emissivity retrieval for each band. 

To demonstrate the various error sources described above, Figure 15 shows results from a 

TEUSim run to quantify the relative contributions for three error sources including model (TES 

retrieval), instrument noise (NEdT = 0.2 K) and atmospheric (10% relative humidity error, and 1 

K temperature error). A U.S. standard and a tropical atmospheric profile was used with the 

MODTRAN model. Results in Figure 15 show histograms of the total accuracy and precision  
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Figure 15. Histograms displaying the LST accuracy results of a 6-band TES approach with SBG TIR band 

locations for standard atmosphere (left) and tropical atmosphere (right), and for three different error sources 

including model (TES retrieval), instrument noise (NEdT = 0.2 K) and atmospheric (10% relative humidity 

error, and 1 K temperature error). 10,000 Monte Carlo simulations were run using MODTRAN and input 

ECOlib spectra of rocks, sands, soils, and vegetation. The errorbar represents the standard deviation 

(precision) of the simulation run for all errors combined. 

 (errobar) for the standard (nominal) and tropical (difficult case) atmospheres using 10,000 

Monte Carlo simulations and input ECOlib spectra of rocks, sands, soils, and vegetation. The 

results show that for the standard atmosphere that the atmospheric correction error results in the 

largest error of 0.17 K, followed by the model error of 0.15 K and instrument noise had the 

smallest error of 0.05 K. For the tropical case, errors increase to 0.24 K for the atmospheric 

correction and to 0.22 K for the instrument noise, but the model error stays relatively stable with 

only slight increase to 0.17 K. This demonstrates that increasing the water vapor content has a 

large effect on both the atmospheric correction and instrument noise influence on the TES 

algorithm. The results are demonstrate that for SBG, the total accuracy of the L2 LST product is 

expected to be less than 1 K assuming that instrument noise is ≤0.2 K and input atmospheric 
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profiles are accurate to within 10% in relative humidity and 1 K in air temperature. These are 

typical error estimates of NWP models based on in situ validation results. 

Table 6 shows uncertainty results using the SeeBor radiosounding database and four 

different surface classes including graybodies (vegetation, water, ice, snow), rocks, soils and 

sands all extracted from ECOlib. Random errors were simulated at each level using a uniformly 

distributed random number generator for the profiles (1 K temperature, 10% humidity, 

instrument noise of 0.2 K) and surface temperature estimated using equation 18. Two different 

versions of TES were used for the retrievals, a 3-band TES algorithm (SBG TIR bands 2, 5, 6) 

and a 5-band TES algorithm (SBG TIR bands 1, 2, 3, 5, 6). Simulations were all run at nadir 

view angle. The results show that rock samples had the greatest uncertainty in retrieved LST but 

was larger for the 3-band TES (1.45 K) when compared to the 5-band approach (1.2 K). This is 

due to larger scatter and uncertainty in the calibration curve when less bands are used for the 

regression, combined with the fact that rocks typically have larger spectral contrast and more 

difficult to retrieve spectral shapes. The total uncertainty for the 3-band approach was 1.15 K, 

while the 5-band approach had a total uncertainty below the 1 K level.  

Table 6. LST total uncertainty expressed as the root mean square error (RMSE) using a 3-band and 5-band 

TES algorithm for 4 different surface classes with surface emissivity spectra from ECOlib (111 total samples), 

MODTRAN simulations, and SeeBor global radiosonde profiles. The LST uncertainty includes random 

errors in simulated air temperature (1 K), relative humidity profile (10%), and instrument noise (0.2 K) as 

discussed in the text. 

   LST Total Uncertainty [K] 
Surface Type Samples Simulations TES 3-band TES 5-band 

Vegetation, 
water, ice, snow 

8 660,096 1.19 0.93 

Rocks 48 3,960,686 1.45 1.16 
Soils 45 3,713,040 0.90 0.81 
Sands 10 825,120 0.99 0.92 
Total 111 9,158,832 1.15 0.96 
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5.7 Parameterization of Uncertainties  

A key requirement for generating a LST&E dataset is accurate knowledge of all 

contributing uncertainties. Uncertainties for each input product must be rigorously estimated for 

a variety of different conditions on a pixel-by-pixel basis before they can be merged and 

incorporated into a time series of measurements of sufficient length, consistency, and continuity 

to adequately meet the science requirements. The next logical step is to apply the uncertainty 

statistics produced from the TEUSim and apply them to estimate uncertainties from real data. To 

achieve this we use a simple empirical model where the total uncertainty, taken as the RMSE of 

the differences between simulated (truth) and retrieved LST&E, is regressed to the simulation 

inputs that showed the highest dependence error. These were the sensor view angle, total water 

vapor column amount, and land surface type. We then fit the total uncertainty with these 

independent variables using a least-squares method fit to a quadratic function. Three surface 

types were classified: graybody, transitional, and bare. The transitional surface represents a 

mixed cover type, and was calculated by varying the vegetation fraction cover percentage, 𝑓𝑣, by 

25, 50, and 75% for the set of bare surface spectra (rocks, soils, sand) as follows:  

 𝜀𝑡𝑟𝑎𝑛𝑠 = 𝜀𝑔𝑟𝑎𝑦 ∙ 𝑓𝑣 + 𝜀𝑏𝑎𝑟𝑒 ∙ (1 − 𝑓𝑣) (23) 

where 𝜀𝑡𝑟𝑎𝑛𝑠 is the transition emissivity, 𝜀𝑔𝑟𝑎𝑦 is a graybody emissivity spectrum (e.g., conifer), 

and 𝜀𝑏𝑎𝑟𝑒 are the lab emissivities for bare surfaces. 

The total uncertainty includes both a sensor view angle (SVA) and TCW dependence.  

 𝛿𝐿𝑆𝑇𝑆𝐵𝐺 = 𝑎𝑜 + 𝑎1𝑇𝐶𝑊 + 𝑎2SVA + 𝑎3𝑇𝐶𝑊 ∙ 𝑆𝑉𝐴 + 𝑎4𝑇𝐶𝑊2

+ 𝑎5𝑆𝑉𝐴2 

(24) 

Similarly, the band-dependent emissivity uncertainties can be expressed as: 
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 𝛿𝑖,𝑆𝐵𝐺 = 𝑎𝑖,𝑜 + 𝑎𝑖,1𝑇𝐶𝑊 + 𝑎𝑖,2SVA + 𝑎𝑖,3𝑇𝐶𝑊 ∙ 𝑆𝑉𝐴 + 𝑎𝑖,4𝑇𝐶𝑊2 + 𝑎𝑖,5𝑆𝑉𝐴2 (25) 

where 𝛿𝐿𝑆𝑇 is the LST uncertainty (K) calculated as the difference between the simulated and 

retrieved LST, 𝛿𝑖 is the band-dependent emissivity uncertainty for band i, calculated as the 

difference between the input lab emissivity and retrieved emissivity, and 𝑎𝑖 and 𝑎𝑖,𝑗 are the LST 

and emissivity regression coefficients and depend on surface type (graybody, transition, bare).  

A sensitivity study showed that the parameterizations given by equations 19–20 provided 

the best fit to the simulation results in terms of RMSE, with fits of ~0.1 K. Once the coefficients 

are established they can be applied on a pixel-by-pixel basis across any scene given estimates of 

TCW (usually extracted from the NWP data, e.g. GEOS5), and the SVA from the product 

metadata. A simple emissivity threshold using a band with large spectral variation can be used to  

 

Figure 16. Example LST error for a VIIRS scene on 19 July 2023 over the western US using eq. 24. LST errors 

range from 0-2 and increase with higher PWV content and sensor view angle.  
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discriminate between graybody, transition, and bare types in any given scene for application of 

the relevant coefficients. This uncertainty model will be applied to SBG LST&E retrievals and 

included in the Scientific Data Set (SDS). The uncertainties will be calculated on a pixel-by-

pixel basis for LST and emissivity for all 5 bands.  

 

 

6 Emissivity anisotropy correction 

LST data retrieved from TIR remote sensing can have strong directional dependencies due 

to the intrinsic heterogeneity of the land surface resulting in anisotropic emission.  The 

directional behavior of the LST has been identified and quantified in numerous studies and is a 

major source of artificial variability/biases in LST data records (Duffour et al., 2016; Ermida et 

al., 2014; Guillevic et al., 2013; Rasmussen et al., 2011). Some of the LST variability with 

viewing angle can be attributed to emissivity, since most natural surfaces such as desert sands 

and forests are anisotropic emitters (Cao et al., 2019; Cuenca and Sobrino, 2004; García-Santos 

et al., 2012; Labed and Stoll, 1991; Lagouarde et al., 1995; Sobrino and Cuenca, 1999). The 

anisotropy of soil emissivity is related to geometrical effects of grain size, roughness and 

porosity (Labed and Stoll, 1991). A number of physical models (e.g. (Hapke, 1981; Moersch and 

Christensen, 1995; Pitman et al., 2005; Wald and Salisbury, 1995) and empirical models (e.g. 

(García-Santos et al., 2012; Nerry et al., 1991) have been used to address the angular 

dependence, however, since a sensor’s field of view (FOV) may encompass a wide range of 

materials, it is difficult to translate laboratory or modeled emissivity anisotropy to the satellite 

pixel scale of tens of meters or more (Ermida et al. 2023). Therefore, Ermida et al. 2023 

proposed a view angle dependent emissivity correction directly from the satellite pixel scale 

retrievals and applied to the TES algorithm.  
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The inputs to the TES algorithm (surface radiance, downwelling radiance) assume a 

Lambertian surface (isotropic), and the calibration curve uses a set of library emissivity spectra 

that have been measured in the lab with no angular dependence. As a result, Ermida et al. 2023 

proposed a new methodology to derive the MMD calibration curve based on multi-sensor 

observations from a combination of Spinning Enhanced Visible and Infrared Imager (SEVIRI) 

on-board Meteosat Second Generation (MSG) satellites and the Visible Infrared Imaging 

Radiometer Suite (VIIRS) on-board the joint NASA/NOAA Suomi National Polar-orbiting 

Partnership (NPP). Taking advantage of the multi-angle view provided by the different sensors, 

Ermida et al. 2020 was able to characterize emissivity dependency of view zenith angle over a 

selection of sites over homogeneous desert regions. The correction was limited to bare areas 

since studies suggest that surface roughness introduced by vegetation tends to attenuate the 

anisotropy of emissivity (Sobrino et al., 2005).  

6.1 MMD calibration curve with view angle dependence 

 

Although the TES algorithm provides direct estimates of emissivity based on TOA satellite 

radiance measurements, (Ermida et al., 2020) showed that the TES can only accurately estimate 

angular effects of the channel IR8.7, since the MMD constrains the spectral variations of the 

emissivity with angle for the other channels. The work by Ermida et al. (2020) suggests that 

different MMD curves for different view angles might be necessary to account for emissivity 

anisotropy and proposed a reformulation of the MMD curve in order allow angular variations of 

the emissivity: 

𝜀min = 𝑎1 − 𝑎2𝑀𝑀𝐷𝑎′3  
 (26) 

with 
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𝑎′3 = 𝑎3 + 𝑎4𝑉𝑍𝐴𝑎5  
(27) 

with the VZA with units of degrees. The calibration of the new MMD coefficients 𝑎4 and 𝑎5 

cannot be obtained from spectral library data since these generally correspond to a nadir 

configuration. In order to obtain the needed data for the calibration, a multi-sensor retrieval 

approach was used at the selected sites. Because the spectral library is likely to provide 

coefficients with better accuracy, and the sites’ retrievals are limited to desert bare ground 

conditions, only the 𝑎4 and 𝑎5 coefficients are fitted to the new data. To achieve that, equation 

(26) is first fitted to multi-sensor retrievals for different view zenith angle (VZA) classes, fixing 

𝑎1 and 𝑎2 to the spectral library values, i.e. only coefficient 𝑎′3 is fitted. Then, equation (27) is 

fitted to the previously obtained 𝑎′3 values for each VZA class. Here, 𝑎3 is also prescribed using 

the spectral library-based estimate and ultimately only 𝑎4 and 𝑎5 are fitted, yielding the values 

𝑎4 = −5.6290 × 10−7 and 𝑎5 = 2.7106. Since the coefficients in equation (27) were derived 

from VIIRS TIR bands, they are valid for other sensors with a similar spectral range in TIR 

bands since the fit is based on the emin vs MMD curve. For this reason we will use the same 

coefficients derived from equation (27) for ECOSTRESS LST retrievals, which will have a very 

similar band configuration as SBG, and test the new SVA dependent calibration curve over 

selected sites with validation data (e.g. Gobabeb, Namibia). Since the maximum viewing angle 

with ECOSTRESS is 30 degrees (SBG will be 35 degrees) we expect the impact on LST&E 

retrievals to be relatively small, but non-negligible, especially over arid surfaces. 
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Figure 17 (left)  MMD curves as obtained by fitting equation 26 to directional emissivity data derived with the 

multi-sensor method, for seven of the VZA bins; (right) Coefficient 𝒂′𝟑 of the MMD equation (eq. 26; blue) as 

function of the VZA and respective fitted curve (eq. 27; red). 

 

 

7 Quality Control and Diagnostics 

 The T and 𝜖 products will need to be assessed using a set of quality control (QC) flags. 

These QC flags will involve automatic tests processed internally for each pixel and will depend on 

various retrieval conditions such as whether the pixel is over land or ocean surface, the atmospheric 

water vapor content (dry, moist, very humid, etc.), and cloud cover. The data quality attributes will 

be set automatically according to parameters set on data conditions during algorithm processing 

and will be assigned as either "bad," "suspect," or "good." Estimates of the accuracy and precision 

of the T and 𝜖 product will be reported in a separate data plane. At each step in the TES algorithm, 

various performance information will be output, which will give the user a summary of algorithm 

statistics in a spatial context. This type of information will be useful for determining surface type, 

atmospheric conditions, and overall performance of TES.   

 The architecture of the SBG data plane will be very similar to the ECOSTRESS T and 𝜖 

QA data plane and the MOD21 product (Hulley et al. 2012a). It will consist of header information 

followed by an 8-bit QA data plane. The structure of the QA data plane will consist of ten primary 

fields, which are detailed in Table 7: 
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1. Mandatory QA flags: Overall description of status of pixel, produced with good quality, 

unreliable quality, not produced due to cloud, or other reasons than cloud. 

2. Data Quality Field: good data, missing pixel, fairly and poorly calibrated are assigned to 

specific bit patterns. 

3. Cloud Mask Field: Outputs from cloud mask statistics, e.g., optically thick or thin cloud, 

cirrus or contrails, clear, or snow/ice determined from NDSI threshold.  

4. Cloud Adjacency: Clear pixels defined in the cloud mask will be assigned an adjacency 

category dependent on distance to the nearest cloud defined quantitatively by the number of 

pixels (e.g., very close, close, far, very far).  

5. The final value of 𝜖𝑚𝑎𝑥 used in the NEM module after optimization (if necessary).  

6. Number of iterations needed to remove reflected downwelling sky irradiance. 

7. Atmospheric opacity test for humid scenes, using 𝐿𝜆
↓ /𝐿′ test. 

8. MMD regime: MMD<0.3 (near-graybody) or MMD>0.3 (likely bare). 

9. Emissivity accuracy (poor, marginal, good excellent). 

10. LST accuracy (poor, marginal, good excellent). 

 The emissivity and LST accuracies described in bits 12-15 will be estimated from the 

uncertainty parameterization model. Classifying the performance level is based on typical 

validation results from using the TES algorithm from various instruments including ASTER and 

MODIS (Hulley and Hook 2011).  

 Pixels with 'unreliable quality' are typically either affected by nearby cloud, or have a large 

water vapor loading making the retrieval more uncertain. These pixels are flagged if they are within 

~500 m of a detected nearby cloud, if the emissivity for the 12 micron is less than 0.95, or if the 
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transmissivity for that pixel is low (<0.3) due to a nearly opaque atmosphere (high water vapor). 

Emissivities for the 12 micron band usually invariant with respect to surface type and are high 

with values >0.96, unless the surface consists of rare mafic materials such as some basalts which 

are found in volcanic regions and have an unusually low emissivity in the longwave bands. If a 

pixel is affected by cloud, or there is incomplete atmospheric correction due to water vapor effects, 

band 5 emissivities will typically fall below 0.95.   

Table 7. Bit flags defined in the QC SDS for the 5-band ECOSTRESS algorithm.  

Bits Long Name Description 

1&0 Mandatory QA 
flags 

00 = Pixel produced, best quality 

01 = Pixel produced, nominal quality. Either 
one or more of the following conditions are 
met:  

1. emissivity in both 11 and 12 micron 
bands < 0.95,  i.e. possible cloud 
contamination 

2. low transmissivity due to high water 
vapor loading (<0.4), check PWV values 
and error estimates 

10 = Pixel produced, but cloud detected 

11 = Pixel not produced due to missing/bad 
data, user should check Data quality flag bits 

  3 & 2 Data quality flag 00 = Good quality L1B data 

01 = not set 

10 = not set 

11 = Missing/bad L1B data 

5 & 4 Cloud/Ocean Flag 

 

tbd 

7 & 6 Iterations 00 = Slow convergence 

01 = Nominal 

10 = Nominal 
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11 = Fast 

9 & 8 Atmospheric 
Opacity 

00 = >=3 (Warm, humid air; or cold land) 

01 = 0.2 - 0.3 (Nominal value) 

10 = 0.1 - 0.2 (Nominal value) 

11 = <0.1 (Dry, or high altitude pixel) 

11 & 10 MMD 00 = > 0.15 (Most silicate rocks) 

01 = 0.1 - 0.15 (Rocks, sand, some soils) 

10 = 0.03 - 0.1 (Mostly soils, mixed pixel) 

11 = <0.03 (Vegetation, snow, water, ice) 

13 & 12 Emissivity accuracy  

 

00 = >0.02 (Poor performance) 

01 = 0.015 - 0.02 (Marginal performance) 

10 = 0.01 - 0.015 (Good performance) 

11 = <0.01 (Excellent performance) 

15 & 14 LST accuracy 00 = >2 K (Poor performance) 

01 = 1.5 - 2 K (Marginal performance) 

10 = 1 - 1.5 K (Good performance) 

11 = <1 K (Excellent performance) 
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8 Scientific Data Set (SDS) Variables 

 

 The SBG LST&E products will be archived in Hierarchical Data Format 5 - Earth 

Observing System (HDF5-EOS) format files. HDF is the standard archive format for NASA 

EOS Data Information System (EOSDIS) products. The LST&E product files will contain global 

attributes described in the metadata, and scientific data sets (SDSs)  with local 

attributes. Unique in HDF-EOS data files is the use of HDF features to create point, swath, and 

grid structures to support geolocation of data. These structures (Vgroups and Vdata) provide 

geolocation relationships between data in an SDS and geographic coordinates (latitude and 

longitude or map projections) to support mapping the data. Attributes (metadata), global and 

local, provide various information about the data. Users unfamiliar with HDF and HDF-EOS 

formats may wish to consult Web sites listed in the Related Web Sites section for more 

information. 

 The scientific variable arrays that will be output in the SBG L2 product are highlighted in 

Table 8, including descriptions of data type, units, valid range, fill value, scale factor and offset. 

The sequence begins as a swath (scene) at a nominal pixel spatial resolution of 60x60 meters at 

nadir and a nominal swath width of 935 km. The data types and scaling factors have been 

optimized to minimize the amount of memory required to store the data.  
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Table 8. The Scientific Data Sets (SDSs) for the ECOSTRESS L2 product. 

 

SDS Long Name Data 

type 

Units Valid 

Range 

Fill 

Value 

Scale 

Factor 

Offset 

Group SDS (per pixel, 5400 * 5632) 

LST Land Surface 

Temperature 

uint16 K 7500-

65535 

0 0.02 0.0 

QC Quality control 

for LST and 

emissivity 

uint16 n/a 0-65535 n/a n/a n/a 

Emis1 Band 1 emissivity  uint8 n/a 1-255 0 0.002 0.49 

Emis2 Band 2 emissivity uint8 n/a 1-255 0 0.002 0.49 

Emis3 Band 3 emissivity uint8 n/a 1-255 0 0.002 0.49 

Emis4 Band 4 emissivity uint8 n/a 1-255 0 0.002 0.49 

Emis5 Band 5 emissivity uint8 n/a 1-255 0 0.002 0.49 

Emis6 Band 6 emissivity uint8 n/a 1-255 0 0.002 0.49 

Emis7 Band 7 emissivity uint8 n/a 1-255 0 0.002 0.49 

Emis8 Band 8 emissivity uint8 n/a 1-255 0 0.002 0.49 

LST_Err Land Surface 

Temperature 

error 

uint8 K 1-255 0 0.04 0.0 

Emis1_Err Band 1 emissivity 

error 

uint16 n/a 0-65535 0 0.0001 0.0 

Emis2_Err Band 2 emissivity 

error 

uint16 n/a 0-65535 0 0.0001 0.0 

Emis3_Err Band 3 emissivity 

error 

uint16 n/a 0-65535 0 0.0001 0.0 

Emis4_Err Band 4 emissivity 

error 

uint16 n/a 0-65535 0 0.0001 0.0 

Emis5_Err Band 5 emissivity 

error 

uint16 n/a 0-65535 0 0.0001 0.0 

Emis6_Err Band 6 emissivity 

error 

uint16 n/a 0-65535 0 0.0001 0.0 

Emis7_Err Band 7 emissivity 

error 

uint16 n/a 0-65535 0 0.0001 0.0 

Emis8_Err Band 8 emissivity 

error 

uint16 n/a 0-65535 0 0.0001 0.0 

EmisWB Wideband 

emissivity 

uint8 n/a 1-255 0 0.002 0.49 

PWV Precipitable 
Water Vapor 

uint16 cm 0-65535 n/a 0.001 0.0 

water_mask Land/water mask uint8 1=water 0-1 255 1 0 
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0=land 

cloud_mask Land/water mask uint8 1=cloud 
0=clear 

0-1 255 1 0 

height Ground elevation int16 meters -1000-
10000 

-32768 1  0 

Range  Satellite to pixel 
range 

int16 meters 0-32767 -32768 100 800000 

view_zenith Sensor zenith 
angle 

int16 degrees 0-18000 -32768 0.01 0.0 

 

9 Calibration/Validation Plans 
 
 The SBG payload will have two blackbodies operating at approximately 300 K and 340 

K. Both blackbodies will be viewed with each cross-track sweep every 1.29 seconds to provide 

gain and offset calibrations. During pre-flight ground calibration, a large high-emissivity cavity 

blackbody target will be measured to provide radiometric calibration. Data from the ground 

calibration will be used to correct the expected small errors intrinsic to compact flight 

blackbodies, and any radiometer nonlinearity. All flight and ground calibration blackbodies will 

utilize redundant NIST-traceable temperature sensors. The calibrated TIR data will have a 300 K 

radiometric accuracy of 0.5 K and a radiometric precision of 0.1 K in 6 spectral bands.  

 In addition to calibration with blackbodies, SBG will perform vicarious calibration using 

a well characterized set of ground calibration/validation sites shown in Table 10. 

Calibration/Validation sites will include well established water, vegetation, and barren targets 

(Hook et al. 2004; Hulley et al. 2009a). Many of these sites are currently being used to validate 

the TIR measurements of ASTER, MODIS and ECOSTRESS LST data (Hook et al. 2007; 

Hulley et al. 2022; Hulley et al. 2009a). This work will be conducted as part of the SDS activities 

and will ensure that the ECOSTRESS data and products meet the required accuracy, precision 

and uncertainty. 
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 Two methods have been established for validating LST data: a conventional T-based 

method and an R-based method (Wan and Li 2008). The T-based method requires ground 

measurements over thermally homogenous sites concurrent with the satellite overpass, while the 

R-based method relies on a radiative closure simulation in a clear atmospheric window region to  
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Table 9. ECOSTRESS targets include all of CONUS plus 1,000 km regions centered on climate hotspots, 

agricultural regions, and FLUXNET validation sites. ENF: evergreen needleleaf forest; EBF: evergreen 

broadleaf forest;  WSA: woody savanna; SAV: Savanna; CRO: cropland; DBF: Deciduous Broadleaf Forest; 

Cal/Val: LST Calibration/Validation. 

Site Biome Type Latitude Longitude 
Climate Hotspot Regions 

Boreal North America ENF 47.0 -87.0 

Boreal Eurasia ENF 47.0 45.0 

Tropical/Dry Transition 1 EBF -12.0 -67.0 

Tropical/Dry Transition 2 EBF/WSA -16.0 -50.0 

Tropical/Dry Transition 3 EBF/WSA 20.0 -103.0 

Tropical/Dry Transition 4 WSA/SAV 9.0 4.0 

Tropical/Dry Transition 5 WSA/SAV -23.0 22.0 

Agricultural Regions 

Agricultural North America 1 CRO 35.7 -121.0 

Agricultural North America 2 CRO 41.5 -98.7 

Agricultural Eurasia 1 CRO 44.2 18.0 

Agricultural Eurasia 2 CRO 25.0 78.0 

Agricultural Eurasia 3 CRO 47.0 0.0 

ET and LST Validation Sites 

Campbell River, Canada ENF 49.9 -125.3 

Hartheim, Germany ENF 47.9 7.6 

Howland Forest, ME, USA ENF 45.2 -68.7 

Metolius, OR, USA ENF 44.5 -121.6 

Quebec Boreal, Canada ENF 49.7 -74.3 

Tatra, Slovak Republic ENF 49.1 20.2 

Wind River Crane, WA, USA ENF 45.8 -122.0 

Guyaflux, French Guyana EBF 5.3 -52.9 

La Selva, Costa Rica EBF 10.4 -84.0 

Manaus K34, Brazil EBF -2.6 -60.2 

Santarem KM67, Brazil EBF -2.9 -55.0 

Santarem KM83, Brazil EBF -3.0 -55.0 

Chamela, Mexico DBF 19.5 -105.0 

Duke Forest, NC, USA DBF 36.0 -79.1 

Hainich, Germany DBF, Cal/Val 51.1 10.5 

Harvard Forest, MA, USA DBF 42.5 -72.2 

Hesse Forest, France DBF 48.7 7.1 

Tonzi Ranch, CA, USA DBF/WSA 38.4 -121.1 

ARM S. Great Plains, OK, USA CRO 36.6 -97.5 

Aurade, France CRO 43.5 1.1 

Bondville, IL, USA CRO, Cal/Val 40.0 -88.3 

El Saler-Sueca, Spain CRO 39.3 -0.3 

Mead 1, 2, 3 NE, USA CRO 41.2 -96.5 

Salton Sea, CA Cal/Val 33.3 -115.7 

Lake Tahoe, CA Cal/Val 39.15 -120 

Gobabeb, Namibia Cal/Val 23.55 15.05 

Algodones Dunes, CA Cal/Val 33.0 -115.1 
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estimate the LST from top of atmosphere (TOA) observed brightness temperatures, assuming the 

emissivity is known from ground measurements. The T-based method is the preferred method, 

but it requires accurate in-situ measurements that are only available from a small number of 

thermally homogeneous sites concurrently with the satellite overpass. The R-based method is not 

a true validation in the classical sense, but it is useful for exposing biases in LST products and 

doesn't require simultaneous in-situ measurements and is therefore easier to implement both day 

and night over a larger number of global sites; however, it is susceptible to errors in the 

atmospheric correction and emissivity uncertainties.  

 Emissivity samples have been collected at the Algodones and Gobabeb Cal/Val sites and 

their emissivity determined in the laboratory using a Nicolet 520 FT-IR spectrometer (Gottsche 

and Hulley 2012b). Validation of emissivity data from space ideally requires a site that is 

homogeneous in emissivity at the scale of the imagery, allowing several image pixels to be 

validated over the target site. A validation study at the Land Surface Analysis–Satellite 

Application Facility (LSA-SAF) Gobabeb validation site in Namibia showed that MODIS 

emissivities derived from a 3-band TES approach (MOD21 product) matched closely with in-situ 

emissivity data (~1%), while emissivities based on land cover classification products (e.g., 

SEVIRI, MOD11) overestimated emissivities over the sand dunes by as much as 3.5% (Gottsche 

and Hulley 2012a). Similar studies will be performed with ECOSTRESS to determine if the 

spectral shapes of the emissivity retrievals are consistent with in situ measurements. 

 We plan to use the Lake Tahoe and Salton Sea automated validation sites for cal/val over 

water bodies. At these sites measurements of skin temperature have been made every two 

minutes since 1999 (Tahoe) and 2006 (Salton Sea) and are used to validate the mid and thermal 

infrared data and products from ASTER and MODIS (Hook et al. 2007). Water targets are ideal 
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for cal/val activities because they are thermally homogeneous and the emissivity is generally 

well known. A further advantage of Tahoe is that the lake is located at high altitude, which 

minimizes atmospheric correction errors, and is large enough to validate sensors from pixel 

ranges of tens of meters to several kilometers. Figure 18 shows an example of differences 

between the standard MODIS (MOD11_L2) and ASTER (AST08) LST products and in-situ 

measurements at Lake Tahoe. The MODIS product is accurate to ±0.2 K, while the ASTER 

product has a bias of 1 K due to residual atmospheric correction effects. The typical range of 

temperatures at Tahoe is from 5°C to 25°C. More recently in 2008, an additional cal/val site at 

the Salton Sea was established. Salton Sea is a low-altitude site with significantly warmer 

temperatures than Lake Tahoe (up to 35°C), and together they provide a wide range of different 

conditions.  

  

Figure 18. Difference between the MODIS (MOD11_L2) and ASTER (AST08) LST products and in-situ 

measurements at Lake Tahoe. The MODIS product is accurate to ±0.2 K, while the ASTER product has a bias 

of 1 K due to residual atmospheric correction effects since the standard product does not use a Water Vapor 

Scaling (WVS) optimization model. 
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 For vegetated surface types we will use a combination of data from the Surface Radiation 

Budget Network (SURFRAD) and FLUXNET sites. For SURFRAD, we will use a set of six 

sites established in 1993 for the continuous, long-term measurements of the surface radiation 

budget over the United States through the support of NOAA’s Office of Global Programs 

(http://www.srrb.noaa.gov/surfrad/). The six sites (Bondville, IL; Boulder, CO; Fort Peck, MT; 

Goodwin Creek, MS; Penn State, PA; and Sioux Falls, SD) are situated in large, flat agricultural 

areas consisting of crops and grasslands and have previously been used to assess the MODIS and 

ASTER LST&E products with some success (Augustine et al. 2000; Wang and Liang 2009). 

From FLUXNET and the Carbon Europe Integrated Project (http://www.carboeurope.org/), we 

will include an additional four sites to cover the broadleaf and needleleaf forest biomes (e.g., 

Hainich and Hartheim, Germany; Hesse Forest and Aurade, France; El Saler-Sueca, Spain), 

using data from the FLUXNET as well as data from the EOS Land Validation Core sites 

(http://landval.gsfc.nasa.gov/coresite_gen.html). We will further use data from the Atmospheric 

Radiation Measurement (ARM) cal/val site in Oklahoma, USA for validation of LST. The 

Southern Great Plains (SGP) site was the first field measurement site established by DOE's ARM 

Program. The SGP site consists of in situ and remote-sensing instrument clusters arrayed across 

approximately 55,000 square miles (143,000 square kilometers) in north-central Oklahoma. 

 For LST validation over arid regions, we will use two pseudo-invariant, homogeneous 

sand dune sites located in southwestern USA (Algodones dunes) and in Namibia (Gobabeb). 

These sites have already been used for validating ASTER, MODIS, and AIRS LST products, 

(Hulley et al. 2009b). The emissivity and mineralogy of samples collected at these sites have 

been well characterized and are described by Hulley et al. (2009a).  
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 Pseudo-invariant ground sites such as playas, salt flats, and claypans have been 

increasingly recognized as optimal targets for the long-term validation and calibration of visible, 

shortwave, and thermal infrared data (Bannari et al. 2005; Cosnefroy et al. 1996; de Vries et al. 

2007; Teillet et al. 1998). We have found that large sand dune fields are particularly useful for 

the validation of TIR emissivity data (Hulley and Hook 2009a). Sand dunes have consistent and 

homogeneous mineralogy and physical properties over long time periods. They do not collect 

water for long periods as playas and pans might, and drying of the surface does not lead to cracks 

and fissures, typical in any site with a large clay component, which could raise the emissivity due 

to cavity radiation effects (Mushkin and Gillespie 2005). Furthermore, the mineralogy and 

composition of sand samples collected in the field can be accurately determined in the laboratory 

using reflectance and x-ray diffraction (XRD) measurements. In general, the dune sites should be 

spatially uniform and any temporal variability due to changes in soil moisture and vegetation 

cover should be minimal. Ideally, the surface should always be dry, since any water on the 

surface can increase the emissivity by up to 0.16 (16%) in the 8.2–9.2-μm range depending on 

the type of soil (Mira et al. 2007).  

9.1 Emissivity Validation Methodology 

 

 Seasonal changes in vegetation cover, aeolian processes such as wind erosion, deposition 

and transport, and daily variations in surface soil moisture from precipitation, dew, and snowmelt 

are the primary factors that could potentially affect the temporal stability and spatial uniformity 

of the pseudo-invariant sand dune cal/val sites. The presence of soil moisture would result in a 

significant increase in TIR emissivity at the dune sites, caused by the water film on the sand 

particles decreasing its reflectivity (Mira et al. 2007; Ogawa et al. 2006), particularly for MODIS  
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Figure 19. Laboratory-measured emissivity spectra of sand samples collected at ten pseudo-invariant sand dune 

validation sites in the southwestern United States. The sites cover a wide range of emissivities in the TIR region. 

 

band 29 in the quartz Reststrahlen band. However, given that the dune validation sites are 

aeolian (high winds), at high altitude (low humidity), and in semi-arid regions (high skin 

temperatures), the lifetime of soil moisture in the first few micrometers of the surface skin layer 

as measured in the TIR is most likely small due to large sensible heat fluxes and, therefore, high 

evaporation rates, in addition to rapid infiltration. Consequently, we hypothesize that it would 

most likely take a very recent precipitation event to have any noticeable effect on remote-sensing 

observations of TIR emissivity over these types of areas. 

 Figure 19 shows emissivity spectra from sand dune samples collected at ten sand dune 

sites in the southwestern United States. The spectra cover a wide range of emissivities in the TIR 

region. These sites will be the core sites used to validate the emissivity and LST products from 
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ECOSTRESS. Figure 20 shows ASTER false-color visible images of each dune site and 

comparisons between the retrieved ASTER emissivity spectra and lab measurements. The lab 

spectra in Figure 20 show the mean and standard deviation (spatial) in emissivity for all sand 

samples collected at the site, while the ASTER spectra give the mean emissivity and combined 

spatial and temporal standard deviation for all observations acquired during the summer (July–

September) time periods. The results show that a 5-band TES derived emissivity from ASTER 

data captures the spectral shape of all the dune sands very well. The quartz doublet centered 

around ASTER band 11 (8.6 µm) is clearly visible for Algodones Dunes samples, and the 

characteristic gypsum minimum in ASTER band 11 (8.6 µm) is evident from the White Sands 

samples. Similar results are expected for the 5-band TES algorithm planned for ECOSTRESS 

 

Figure 20. ASTER false-color visible images (top) and emissivity spectra comparisons between ASTER TES 

and lab results for Algodones Dunes, California; White Sands, New Mexico; and Great Sands, Colorado 

(bottom). Squares with blue dots indicate the sampling areas. ASTER error bars show temporal and spatial 

variation, whereas lab spectra show spatial variation. 
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9.2 LST Validation Methodology 

 

9.2.1 Radiance-based Approach 

 

 For LST validation over the sand dune sites, we will use a recently established R-based 

validation method (Coll et al. 2009b; Wan and Li 2008). The advantage of this method is that it 

does not require in-situ measurements, but instead relies on atmospheric profiles of temperature 

and water vapor over the site and an accurate estimation of the emissivity. The R-based method 

is based on a ‘radiative closure simulation’ with input surface emissivity spectra from either lab 

or field measurements, atmospheric profiles from an external source (e.g., model or radiosonde), 

and the retrieved LST product as input. A radiative transfer model is used to forward model these 

parameters to simulate at-sensor BTs in a clear window region of the atmosphere (11–12 µm). 

The input LST product is then adjusted in 2-K steps until two calculated at-sensor BTs bracket 

the observed BT value. An estimate of the ‘true’ temperature (𝐿𝑆𝑇𝑅−𝑏𝑎𝑠𝑒𝑑) is then found by 

interpolation between the two calculated BTs, the observed BT, and the initial retrieved LST 

used in the simulation. The LST error, or uncertainty in the LST retrieval is simply found by 

taking the difference between the retrieved LST product and the estimate of 𝐿𝑆𝑇𝑅−𝑏𝑎𝑠𝑒𝑑. This 

method has been successfully applied to MODIS LST products in previous studies (Coll et al. 

2009a; Wan and Li 2008; Wan 2008). For MODIS data, band 31 (10.78–11.28 µm) is typically 

used for the simulation since it is the least sensitive to atmospheric absorption in the longwave 

region. The advantage of the R-based method is that it can be applied to a large number of global 

sites where the emissivity is known (e.g., from field measurements) and during night- and 

daytime observations to define the diurnal temperature range.  

 Wan and Li (2008) proposed a quality check to assess the suitability of the atmospheric 

profiles by looking at differences between observed and calculated BTs in two nearby window  
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A) Algodones dunes 

 

B) Great Sands 

 

C) Kelso 

 

D) Killpecker 

 

E) Little Sahara 

 

F) White Sands 

 

Figure 21. An example of the R-based validation method applied to the MODIS Aqua MOD11 and MOD21 

LST products over six pseudo-invariant sand dune sites using all data during 2005. AIRS profiles and lab-

measured emissivities from samples collected at the sites were used for the R-based calculations. 
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regions with different absorption features. For example, the quality check for MODIS bands 31 

and 32 at 11 and 12 µm is:  

 𝛿(𝑇11 − 𝑇12) = (𝑇11
𝑜𝑏𝑠 − 𝑇12

𝑜𝑏𝑠) − (𝑇11
𝑐𝑎𝑙𝑐 − 𝑇12

𝑐𝑎𝑙𝑐) (1)  

where: 𝑇11
𝑜𝑏𝑠 and 𝑇12

𝑜𝑏𝑠 are the observed brightness temperatures at 11 and 12 µm respectively, 

and 𝑇11
𝑐𝑎𝑙𝑐 and 𝑇12

𝑐𝑎𝑙𝑐 are the calculated brightness temperatures from the R-based simulation at 11 

and 12 µm respectively. If 𝛿(𝑇11 − 𝑇12) is close to zero, then the assumption is that the 

atmospheric temperature and water vapor profiles are accurately representing the true 

atmospheric conditions at the time of the observation, granted the emissivity is already well 

known. Because water vapor absorption is higher in the 12-µm region, negative residual values 

of 𝛿(𝑇11 − 𝑇12) imply the R-based profiles are overestimating the atmospheric effect, while 

positives values imply an underestimation of atmospheric effects. A simple threshold can be 

applied to filter out any unsuitable candidate profiles for validation. Although Wan and Li (2008) 

proposed a threshold of ±0.3 K for MODIS data, we performed a sensitivity analysis and found 

that a threshold of ±0.5 K resulted in a good balance between the numbers of profiles accepted 

and accuracy of the final R-based LST. Figure 21 shows an example of the R-based validation 

method applied to the MODIS Aqua MOD11 and MOD21 LST products over six pseudo-

invariant sand dune sites using all data during 2005. AIRS profiles and lab-measured emissivities 

from samples collected at the sites were used for the R-based calculations. The results show that 

the MOD11 SW LST algorithm underestimates the LST by 3–4 K at all sites except White 

Sands, while the MOD21 algorithm has biases of less than 0.5 K. The statistics of the results in 

including bias and RMSE are shown in Table 13. MOD11 RMSEs are as high as ~5 K at Great 

Sands, while MOD21 RMSEs are mostly at the 1.6 K level. The reason for the MOD11 cold bias 

is that the emissivity for barren surfaces is assigned one value that is fixed (~0.96 at 11 µm). This 
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causes large LST errors over bare sites where the mineralogy results in emissivities lower than 

that fixed value. The MOD21 algorithm, on the other hand, physically retrieves the spectral 

emissivity in MODIS bands 29, 31, and 32, along with the LST, and this results in more accurate 

LST results, particularly over bare regions where emissivity variations can be large, both 

spatially and spectrally. Table 14 shows comparisons between the laboratory-derived 

emissivities at each site, along with the mean MOD11 and MOD21 emissivities for band 31 

(11 µm). 

9.2.1.1 Uncertainty Analysis of R-based approach 

 

 The uncertainty in the R-based LST estimate (𝐿𝑆𝑇𝑅−𝑏𝑎𝑠𝑒𝑑) was calculated by perturbing 

the atmospheric temperature and water vapor profiles, and by varying the surface emissivity. 

Atmospheric effects were simulated by first increasing the relative humidity at each NCEP level 

by 10%, and then by increasing the air temperature by 1 K at each level. The effect on the 

accuracy of  𝐿𝑆𝑇𝑅−𝑏𝑎𝑠𝑒𝑑 was estimated as the calculated LST difference between the original and 

the perturbed profiles for the 11 µm window region. The results are summarized in Table 11. 

Using a standard profile with total column water vapor of 2 cm, the absolute LST differences 

where 0.35 K for the water vapor variation (10%), and 0.19 K for the air temperature variation (1 

K), resulting in a total atmospheric effect of ±0.39 K. Using an emissivity perturbation of 0.005 

(0.5%), which represents the maximum spatial variation found from the lab measured spectra 

and ASTER data at each site, resulted in an absolute LST difference of 0.23 K. Validation of the 

Stand-Alone AIRS Radiative Transfer Algorithm (SARTA) with in situ data have shown 

accuracies approaching 0.2 K depending on the wavenumber region (Strow et al. 2006), and this 

uncertainty was considered negligible The total combined root mean square error (RMSE) for 

the uncertainty in 𝐿𝑆𝑇𝑅−𝑏𝑎𝑠𝑒𝑑 based on estimated atmospheric profile, emissivity and radiative 
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transfer model errors was ±0.47 K. This is within the 1 K accuracy requirement for typical in situ 

measurements of LST (Hook et al. 2007). 

 Further, since air temperature and water vapor errors (and emissivity) typically cancel 

each other out and may have different signs at different levels, the simulated error of 0.47 K is 

most likely an overestimate, i.e. a 'worse-case-scenario'. Also, using the brightness temperature 

profile quality check would most likely filter out the majority of unsuitable profiles.  

Table 10. Uncertainty analysis results showing how perturbations in emissivity, air temperature and relative 

humidity affect the relative accuracy of the R-based LST derivation. 

 

Parameter Perturbation R-based LST Change 

Emissivity 𝜺 + 𝟎. 𝟎𝟎𝟓 0.23 K 

Air Temperature 𝑻𝒂𝒊𝒓 + 𝟏 𝑲 0.19 K 

Relative Humidity RH + 10% 0.35 K 

 

  

Table 11. R-based LST validation statistics from six pseudo-invariant sand dune sites using all MOD11 and 

MOD21 LST retrievals during 2005.  

  MOD11 Bias 
MOD11 

RMSE 
 MOD21 Bias 

MOD21 

RMSE 

Algodones (197 scenes) −2.65 2.78   0.50 1.60 

Great Sands  

(123 Scenes) 
−4.71 4.74  0.43 1.52 

Kelso (210 scenes) −4.52 4.58  −0.67 1.64 

Killpecker (147 scenes) −4.07 4.16   −0.09 1.68 

Little Sahara  

(159 scenes) 
−3.42 3.47   0.52 1.63 

White Sands  

(102 scenes) 
−0.06 0.54   0.48 1.34 
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Table 12. Emissivity comparisons between lab, MOD11, and MOD21 at six pseudo-invariant sand sites. 

  Lab MOD11 MOD21 

Algodones (197 scenes) 0.963 0.966 0.954 

Great Sands (123 Scenes) 0.944 0.970 0.949 

Kelso (210 scenes) 0.942 0.966 0.949 

Killpecker (147 scenes) 0.942 0.968 0.946 

Little Sahara (159 scenes) 0.953 0.972 0.952 

White Sands (102 scenes) 0.976 0.974 0.967 

 

 

9.2.2 Temperature-based (T-based)  LST Validation Method 

 

 The T-based method provides the best evaluation of the ability for a LST retrieval 

algorithm to invert the satellite radiometric measurement and accurately account for emissivity 

and atmospheric effects. The difficulty of this method over land is that several accurate, well 

calibrated ground radiometers are required to make rigorous measurements concurrently with the 

satellite overpass over a large thermally homogeneous area ideally representing several pixels at 

the remote sensing scale. Field radiometers typically measure the radiometric temperature of the 

surface being measured, and this measurement has to be corrected for the reflected downwelling 

radiation from the atmosphere and the emissivity before the surface skin temperature can be 

obtained. An example of two state-of-the-art T-based validation sites are discussed next, Lake 

Tahoe, CA/NV and Salton Sea, CA.  

 Lake Tahoe is large clear freshwater lake situated on the California/Nevada border at 

1,996 m elevation making it the largest Alpine lake in North America, and USA's second 

deepest. The Lake Tahoe automated calibration/validation site, was established in 1999 with four 

buoys, referred to as TB1, TB2, TB3 and TB4,  which provide simultaneous measurements of 

skin and bulk temperatures in addition to meteorological data (air temperature, relative humidity, 
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wind speed and direction) every two minutes (Hook et al. 2007). Each buoy includes a custom-

built radiometer developed by JPL that has accuracies below the 0.1 K level. Calibration results 

have shown good agreement with other well-calibrated radiometers to within ±0.05 K (Barton et 

al. 2004). The radiometric measurements are converted to skin temperatures by accounting for 

the effects of emissivity and reflected downwelling sky radiation. For emissivity, an emissivity 

spectrum of water from the ASTER spectral library is used (http://speclib.jpl.nasa.gov) 

(Baldridge et al. 2009), and the reflected downwelling irradiance is computed using radiative 

transfer simulations with atmospheric profiles input from NCEP data (Hook et al. 2003).  Figure 

22 shows an example of the T-based validation results for ECOSTRESS LST versus in situ LST 

measurements for all T-based sites at Lake Constance, Gobabeb, Lake Tahoe, Salton Sea and 

Russell ranch. 

 The Salton Sea validation site is situated on a platform located in the southwest corner of 

the lake and was established more recently at the end of 2007. In contrast to Lake Tahoe, the 

Salton Sea is a large saline lake situated in southeastern California at an elevation of 75 m below 

sea-level. In situ measurements at these two lakes provide the most comprehensive and  largest 

data record of water skin temperatures available. The high quality and frequency of the 

measurements over long time periods and for a wide range of surface temperatures (~4 to 35 ºC) 

and atmospheric conditions make this an excellent in situ dataset for validation and calibration of 

multiple sensors with different overpass times (Hook et al. 2004; Hook et al. 2003; Hook et al. 

2007; Tonooka et al. 2005). 

 The T-based method becomes increasingly more difficult for sensor's with coarser spatial 

resolutions (e.g. MODIS 1km) over land where surface emissivities become spatially and 

spectrally more variable. For example, at the ASTER pixel scale (90 m), depending on the 
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homogeneity of the surface, several radiometer measurements are required over the land surface 

being measured to account for LST variability which could vary by as much as 10 K over a few 

meters (Coll et al. 2009a). Point measurements from flux towers or radiometer measurements 

exist but are not fully representative of the surrounding surface variability at coarse spatial 

scales. Researchers are investigating upscaling techniques from in situ to satellite LST 

measurements, for example by using the Soil Moisture Monitoring - land surface model 

(SETHYS) (Coudert et al. 2006; Guillevic et al. 2012).  However, the fact remains that 

validating satellite LST data at  >1km scale with in situ data over land  remains a big challenge 

due to surface temperature variability that depends on many factors including season, time of 

day, surface type and meteorological conditions.  

 
 

Figure 22. An example of the T-based validation results showing ECOSTRESS LST versus in situ LST 

measurements for all T-based sites at Lake Constance, Gobabeb, Lake Tahoe, Salton Sea and Russell ranch. 
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