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Abstract 

The 2017-2027 Decadal Survey for Earth Science and Applications from Space (ESAS 

2017) was released in January 2018. ESAS 2017 was driven by input from the scientific 

community and policy experts and provides a strategic vision for the next decade of Earth 

observation that informs federal agencies responsible for the planning and execution of civilian 

space-based Earth-system programs in the coming decade. These include the National Aeronautics 

and Space Administration (NASA), the National Oceanic and Atmospheric Administration 

(NOAA), and the U.S. Geological Survey (USGS). NASA has, thus far, utilized this document as 

a guide to inform exploration of new Earth mission concepts that are later considered as candidates 

for fully funded missions. High-priority emphasis areas and targeted observables include global-

scale Earth science questions related to hydrology, ecosystems, weather, climate, and solid earth. 

One of the Designated Observables (DO’s) identified by ESAS 2017 was Surface Biology and 

Geology (SBG) with a goal to acquire concurrent global hyperspectral visible to shortwave 

infrared (VSWIR; 380–2500 nm) and multispectral mid-wave and thermal infrared (MWIR: 3–5 

μm; TIR: 8–12 μm) image data at high spatial resolution (~30 m in the VSWIR and ~ 60 m in the 

TIR) at sub-monthly temporal resolution globally. The final sensor characteristics will be 

determined during the mission formulation phase, but ESAS 2017 provides guidance for a VSWIR 

instrument with 30–45 m pixel resolution, ≤16 day global revisit, SNR > 400 in the VNIR, SNR 

> 250 in the SWIR, and 10 nm sampling in the range 380–2500 nm. It also recommends a TIR 

instrument with more than five channels in 8–12 μm, and at least one channel at 4 μm, ≤60 m pixel 

resolution, ≤3 day global revisit, and noise equivalent delta temperature (NEdT) ≤0.2 K (NASEM, 

2018; Schimel et al., 2020). Alone, SBG will provide a comprehensive global monitoring for 

multiple scientific disciplines. Complemented with systems like Landsat and Sentinel-2 VSWIR, 

global change processes with faster than 16-day global change rates can be mapped. Further, 

complimented with planned TIR systems such as LSTM and TRISHNA, the temporal revisit could 

be as frequent as 1-day at the equator, making the system excellent for tracking dynamic thermal 

features and hazards. This document describes the planned Level-3 Elevated Temperature Features 

(ETF) product for the SBG TIR data.  
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1 Introduction 

The Surface Biology and Geology (SBG) thermal infrared (TIR) instrument – termed the 

Observing Terrestrial Thermal Emission Radiometer (OTTER) consists of a TIR multispectral 

scanner with six spectral bands operating between 8.0 and 13.0 µm and two mid-infrared (MIR) 

bands between 3.0 and 5.0 µm, with a 60 m pixel resolution, an equatorial three day revisit, and a 

noise equivalent delta temperature (NEdT) ≤0.2 K (NASEM, 2018; Schimel et al., 2020). The TIR 

data will be acquired with a wide swath width of 935 km (60°) from an altitude of ~700 km. 

OTTER instrument design and data derive their heritage from the ECOSTRESS instrument, which 

is a five-channel multispectral TIR scanner that was launched to the International Space Station 

(ISS) in June 2018. ECOSTRESS has a 70-m spatial resolution with a wide swath width and revisit 

time that is variable between 3-5 days on average (Table 1). 

Table 1: SBG measurement characteristics compared to other operational and planned (*) spaceborne TIR 

instruments 

Instrument Platform Resolution (m) Revisit 
(days) 

Daytime 
overpass 

TIR bands (8-
12.5 µm) Launch year 

OTTER SBG 60 3 12:30 6 2028* 

ECOSTRESS ISS 38 × 68 3-5 Variable 5 2018 

LSTM  50 4 13:00 5 2028* 

TRISHNA  57 2-3 13:00 4 2025* 

ASTER Terra  90 16 10:30 5 1999 

ETM+/TIRS Landsat 7/8 60-100 16 10:11 1/2 1999/2013 

VIIRS Suomi-NPP 750 Daily 1:30 / 13:30 4 2011 
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MODIS Terra/Aqua 1000 Daily 10:30 / 13:30 3 1999/2002 

GOES Multiple 4000 Daily Every 15 min 2 2000 

This document outlines the theory and methodology for generating the OTTER Level-3 

(L3) elevated temperature features (ETF) product. The ETF product uses the MIR and TIR 

radiance-at-surface data as input. High temperature surface targets such as volcanic eruptions, 

wildfires, and certain anthropogenic infrastructure result in elevated MIR and TIR radiance. The 

initial detection and continual monitoring of these features, commonly referred to as “thermal 

anomalies” are critical for hazard assessment (e.g., new volcanic activity, wildfire movement) and 

certain anthropogenic outputs (e.g., hydrocarbon gas flaring and stack temperatures). As such, the 

ETF product will also be made available as a low-latency product in addition to the standard 

archival processing. The OTTER L3 EFT product will be assessed and validated throughout the 

mission using a combination of comparative archival IR data analysis of persistent high 

temperature emitters (e.g., REFS) and concurrent MIR and TIR data from other orbital and ground 

based sensors (e.g., REFS). 

Early studies using TIR data simply describe the detection of a new thermal anomaly at a 

quiescent volcano, which later gave rise to models of the sub-pixel temperature distribution as the 

spatial and spectral resolution of the TIR (and eventually MIR) data improved (REFS). As the 

temporal frequency also improved, it enabled more accurate modeling of lava and gas flux rates 

as well as chronological descriptions of each eruptive phase. Ramsey and Harris (2013) 

summarized the history of satellite based TIR research of active volcanoes into four broad themes: 

(1) thermal detection, (2) analysis of sub-pixel components, (3) heat/mass flux studies, and (4) 

eruption chronologies. 
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More recently, the number, size, and severity of wildfires have increased dramatically with 

a changing climate, resulting in increased infrastructure damage and decreased air quality 

(Wooster et al., 2003; Vasileva and Moiseenko, 2013; Jaffe et al., 2020). Multispectral MIR and 

TIR data of an entire wildfire can aid in active fire detection, movement over time, and plume 

characterization, all of which are vital for fire managers if the information is provided rapidly. The 

higher temporal resolution and temperature range IR data provided by OTTER will improve the 

characterization of dynamic fire fronts, where temperatures fluctuate hundreds of degrees Celsius 

(Robinson 1991; Roberts et al., 2005; Finney et al., 2015). 

OTTER is sensitive to a large range of temperatures thereby enabling detection of most 

thermal anomalies on Earth without detector saturation (Table 2). The maximum radiometric 

emission for the typical range of Earth surface temperatures (~ 200 to 330 K) is found in the 

thermal infrared region (8 – 13 µm), which shifts to the MIR region (3.5 – 5 µm) for elevated 

temperature features (> 500 K) (Figure 1). The emitted energy in these windows for a given 

wavelength is a function of both temperature and emissivity. Because the ETF product assumes 

blackbody emission (emissivity, ε = 1.0), derived temperatures could have larger uncertainties for 

surfaces with an ε < 1.0.  

ETF is applied to the MIR and TIR L2 surface radiance data for the entire land surface 

imaged by OTTER. Any pixel identified as having an elevated temperature by the algorithm is 

flagged and used to produce the ETF detection image for each scene. The brightness temperature 

for each of these pixels is also calculated to create a second data layer. A data quality layer is also 

included with metrics on the precision and accuracy of the ETF algorithm. 
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The remainder of the document discusses the SBG instrument characteristics, provides 

background on TIR remote sensing, presents the testing approach for the numerous algorithms 

considered, gives a full description and background on the chosen ETF algorithm, provides quality 

assessment, discuss numerical simulation studies and, finally, outlines a validation plan. 

 
Figure 1: Emitted high temperature blackbody radiance curves spanning the MIR (3.0 – 5.0 µm) and 

TIR (8.0 – 13.0 µm) regions (temperatures in K). The TIR detection temperature ranges from 200 to 

500 K, whereas the MIR is sensitive to temperatures from 400 to 1200 K (~ 6.14 × 103 W/m2 µm sr). 
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2 SBG Instrument Characteristics  

2.1 Band positions 

The TIR instrument will acquire data from a sun-synchronous orbit of ~700 km with 60m 

spatial resolution in eight spectral bands with two of those located in the MIR and six in the TIR 

region of the electromagnetic spectrum between 3 and 13 µm (Figure 2). The center position and 

width of each band is provided in Table 2. The positions of the first three TIR bands closely match 

those of the ASTER sensor (ASTER bands 10 – 12), whereas the longest two TIR bands match 

those of the MODIS sensor (MODIS bands 31-32), which are typically used for “split-window” 

type temperature applications (Sobrino et al., 1993; Wang et al., 2019). The OTTER band centered 

at 10.3 µm was added early in Phase A in order to more accurately detect surface mineralogy (e.g., 

distinguishing between silicate feldspars and quartz) as well as sulfate aerosols conversion in 

volcanic plumes. The two MIR bands are present to detect a larger range of high surface 

temperatures (Figure 1) without saturating (e.g., 500 – 1200 K) as well as the potential of elevated 

CO2 emission sources using the 4.8 µm band. 

It is expected that small adjustments to the band positions, widths, and transmission will 

be made based on ongoing engineering filter performance capabilities and finalized once the filters 

are fabricated. 
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Figure 2: SBG boxcar filters for the two MIR and six TIR bands from 3.8-12.5 microns with a typical 

atmospheric transmittance spectrum in gray highlighting the atmospheric window regions. Note the spectral 

width and position of the filters are nearly finalized (see Table 2), however the spectral shape will be 

determined after the detectors are fabricated. 
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Table 2: SBG band positions and characteristics 

Band # 
Center 
Wavelength 
(µm) 

Spectral Width 
(FWHM) (nm) 

Tolerance 
Center 
Wavelength (± 
nm) 

Tolerance 
Spectral 
Width (±nm) 

Knowledge 
Center 
Wavelength 
(±nm) 

Knowledge 
Spectral Width 
(±nm) 

Accuracy 
(Kelvin) NEΔT (K) Range (K) 

MIR-1 3.98 20 50 10 10 10 ≤3@750 ≤0.3@750 700-1200 

MIR-2 4.8 150 100 50 20 20 ≤1@450 ≤0.2@450 400-800 

TIR-1 8.32 300 100 50 20 20 ≤0.5@275 ≤0.2@275 200-500 

TIR-2 8.63 300 100 50 20 20 ≤0.5@275 ≤0.2@275 200-500 

TIR-3 9.07 300 100 50 20 20 ≤0.5@275 ≤0.2@275 200-500 

TIR-4 10.30 300 50 50 20 20 ≤0.5@275 ≤0.2@275 200-500 

TIR-5 11.35 500 100 50 20 20 ≤0.5@275 ≤0.2@275 200-500 

TIR-6 12.05 500 100 50 20 20 ≤0.5@275 ≤0.2@275 200-500 
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2.2 Radiometer 

The TIR instrument will operate as a push-whisk mapper very similar to ECOSTRESS 

with 256 pixels in the cross-whisk direction for each spectral channel. As the spacecraft moves 

forward, the scan mirror sweeps the focal plane image 68.8° across nadir in the cross-track 

direction, which enables a wide swath (935 km) from the spacecraft altitude of ~700 km. Each 

sweep is 256-pixels wide with the different spectral bands are swept across a given point on the 

ground sequentially. The scan mirror rotates at a constant angular speed and images two on-board 

blackbody targets at 300 K and 340 K with each cross-track sweep every 1.29 seconds to provide 

gain and offset calibrations.  
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Table 3: SBG TIR instrument and measurement characteristics 

Spectral 
Bands (µm) 3.95, 4.8, 8.32, 8.63, 9.07, 10.3, 11.35, 12.05 
Bandwidth (nm) 20, 150, 300, 300, 300, 300, 500, 500 

Accuracy at 300 K <0.01 µm 
Radiometric 
Range TIR (8-12.5 µm) bands (200 - 500 K) 

MIR 4.8 µm band (400 - 800 K)  
MIR 3.95 µm band (700 -1200 K) 

Resolution < 0.05 K, linear quantization to 14 bits 
Accuracy < 0.5 K 3-sigma at 275 K 
Precision (NEdT) < 0.2 K 
Linearity > 99% characterized to 0.1 % 
Spatial 
IFOV 60m 
MTF > 0.65 at FNy 
Scan Type Push-Whisk 
Swath Width at 665-km altitude 935 km (± 34.4°) 
Cross Track Samples 10,000 (check) 
Swath Length 10,000 (check) 
Down Track Samples 256 
Band to Band Co-Registration 0.2 pixels (12 m) 
Pointing Knowledge 10 arcsec (0.5 pixels) 
Temporal 
Orbit Crossing Multiple 
Global Land Repeat Multiple 
On Orbit Calibration 
Lunar views 1 per month {radiometric} 
Blackbody views 1 per scan {radiometric} 
Deep Space views 1 per scan {radiometric} 
Surface Cal Experiments 2 (day/night) every 5 days {radiometric}  
Spectral Surface Cal Experiments 1 per year 
Data Collection 
Time Coverage Day and Night 
Land Coverage Land surface above sea level 
Water Coverage n/a  
Open Ocean n/a 
Compression 2:1 lossless 
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3 Theory and Methodology 

3.1 Mid-wave and Thermal Infrared Remote Sensing Background 

The at-sensor measured radiance in the infrared region (3–13 µm) consists of a 

combination of different terms from surface emission, solar reflection, and atmospheric emission 

and attenuation. The Earth-emitted radiance is a function of the temperature and emissivity of the 

surface, which is then attenuated by the atmosphere on its path to the satellite. The emissivity of 

an isothermal, homogeneous emitter is defined as the ratio of the actual emitted radiance to the 

radiance emitted from a blackbody (Figure 1) at the same thermodynamic temperature (Norman 

and Becker 1995), 𝜖𝜖𝜆𝜆= 𝑅𝑅𝜆𝜆/𝐵𝐵𝜆𝜆. Emissivity is an intrinsic property of the surface material and is an 

independent measurement from the surface temperature, which varies with irradiance, local 

atmospheric conditions, time of day, and specific conditions causing elevated temperature (e.g., 

wildfires, volcanic eruptions, etc.). The emissivity of most natural Earth surfaces varies from ~0.7 

to close to 1.0, for the TIR wavelength (8–13 μm) for spatial scales <100 m. Narrowband 

emissivities less than 0.85 are typical for most desert and semi-arid areas due to the strong quartz 

absorption feature (Reststrahlen band) between the 8.0 and 9.5 μm, whereas the emissivity of green 

vegetation and water are generally greater than 0.95 and spectrally flat in the TIR. Dry and 

senesced vegetation as well as ice and snow can have lower emissivity values in the wavelengths 

longer than 10 μm. 

The atmosphere also emits TIR radiation, a percentage of which reaches the sensor directly 

as "path radiance," whereas some amount is radiated downward to the surface (irradiance) and 

reflected back to the sensor. This is commonly known as the reflected downwelling sky irradiance. 

One effect of the sky irradiance is the reduction of the spectral contrast of the emitted surface 
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radiance, due to Kirchhoff's law. Assuming the spectral variation in emissivity is small 

(Lambertian assumption) and using Kirchhoff's law to express the hemispherical-directional 

reflectance as directional emissivity (𝜌𝜌𝜆𝜆 = 1 − 𝜖𝜖𝜆𝜆), the at-sensor measured radiance in the infrared 

spectral region is a combination of three primary terms: the Earth-emitted radiance, reflected 

downwelling radiance (thermal + solar components), and total atmospheric path radiance (thermal 

+ solar components).  

𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜(𝜆𝜆, 𝜃𝜃) = 𝜏𝜏𝜆𝜆(𝜃𝜃) �𝜖𝜖𝜆𝜆𝐵𝐵(𝜆𝜆,𝑇𝑇𝑜𝑜) + 𝜌𝜌𝜆𝜆 �𝐿𝐿𝑜𝑜↓(𝜆𝜆, 𝜃𝜃) + 𝐿𝐿𝑡𝑡↓(𝜆𝜆,𝜃𝜃)�� + 𝐿𝐿𝑡𝑡↑(𝜆𝜆,𝜃𝜃) + +𝐿𝐿𝑜𝑜↑(𝜆𝜆, 𝜃𝜃)       (1) 

where: 𝐿𝐿(𝜆𝜆,𝜃𝜃) = at-sensor radiance, 𝜆𝜆 is wavelength, 𝜃𝜃 is the satellite viewing angle, 𝜖𝜖𝜆𝜆  is the 

surface emissivity, 𝜌𝜌𝜆𝜆 is surface reflectance, 𝐵𝐵(𝜆𝜆,𝑇𝑇𝑜𝑜) is the Planck function describing radiance 

emitted at surface temperature, 𝑇𝑇𝑜𝑜, 𝐿𝐿𝑜𝑜↓  is the total (diffuse and direct) downwelling solar radiance,  

𝐿𝐿𝑡𝑡↓  is the downwelling thermal irradiance, 𝜏𝜏𝜆𝜆(𝜃𝜃) is the atmospheric transmittance, 𝐿𝐿𝑜𝑜↑ (𝜆𝜆,𝜃𝜃) is the 

upward path solar radiance, and 𝐿𝐿𝑡𝑡↑(𝜆𝜆,𝜃𝜃) is the upward thermal path radiance reaching the sensor.  

Reflected solar radiation in the mid-wave infrared region is non-negligible for highly 

reflective surfaces, whereas the same term in the thermal infrared region is generally smaller in 

magnitude (~10%) than the surface-emitted radiance particularly over highly reflective surfaces 

and on humid days where atmospheric water vapor content is high. This contribution in both IR 

regions needs to be taken into account in the atmospheric correction process. However, for high 

temperature surfaces, the emitted radiance (varying by T4) dominates all atmospheric terms, which 

are typically ignored using the radiance-at-sensor values for all calculations. These temperatures 

are calculated using a simple temperature-emissivity approach that assumes an ε = 1.0 at one of 

the infrared wavelengths and solving the Plank Equation for the emitted surface temperature 

(REFS). 
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3.2 Infrared Thermal Anomaly Detection 

The data from spaceborne sensors have been used to detect and monitor volcanic eruptions 

and wildfires from the earliest days of the satellite era (e.g., Gawarecki et al., 1965; Williams and 

Friedman, 1970; Scorer, 1986). These studies focused mostly on hot spot detection and 

temperature measurements using TIR data. They became ever more complex with the launch of 

new sensors providing better spatial, temporal, and spectral data. For example, the ability to extract 

critical information from the subtle phases of precursory activity to the detailed spectral mapping 

of the erupted products grew exponentially (Ramsey and Harris, 2013).  

The ever increasing amount of orbital data has resulted in a wide range of temporal and 

spatial scales with a large number of algorithms designed to automatically detect pixels that are 

deemed “thermally anomalous”. These detection algorithms are commonly rooted in analysis of 

the spatial, spectral, and/or temporal (or some combination thereof) scales of the data. For example, 

an algorithm may use the change in temperature of a region over time to identify the appearance 

of a thermal anomaly (e.g., Tramutoli et al. 1998), whereas other approaches determine the 

radiance difference between bands (e.g., Wright et al., 2002), or that spectral changes over a spatial 

area (Coppola et al., 2016a) to identify an elevated temperature feature (e.g., Figure 1). 

Whether a thermal anomaly detection algorithm operates by assessing radiance (or 

temperature) in spectral, spatial, or temporal space, the methods can be divided into four 

categories: fixed threshold, contextual, temporal, or hybrid. Fixed threshold algorithms are 

spectrally based and use data for a single pixel to assess whether the radiance (or temperature) in 

the MIR and/or TIR bands is thermally anomalous. In contrast, contextual algorithms use the 
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difference between a pixel’s radiance (or temperature) and that of its surrounding pixels (e.g., “the 

background temperature”) to assess its state. Temporal algorithms operate by comparing a pixel’s 

radiance (or temperature) with the preceding historical values for the same pixel over time. These 

time series allow typical pixel values for any given time of day and year to be defined, and 

divergences from the baseline to be statistically assessed. However, by definition, they rely on 

prior data and become more appropriate with increasing mission durations. More recent algorithms 

have incorporated aspects of one or more of these three categories and are dubbed hybrid 

approaches. Many of these algorithms are now benefiting from the application of Artificial 

Intelligence (AI) models to improve these prior statistical approaches (Amato et al., 2023; 

Corradino et al., 2022; Corradino et al., 2023; Piscini and Lombardo, 2014). 

3.2.1 Spatial Approaches 

Automated thermal anomaly detection algorithms using spatial approaches were developed 

by the wildfire and volcano communities during the 1990s (e.g., Flasse and Ceccato, 1996; Flynn 

et al., 1994; Justice and Dowty, 1994; Langaas, 1993; Lee and Tag, 1990). These applied flexible 

thresholds based upon statistics calculated from pixels in the image region immediately 

surrounding a target pixel. For example, the fire detection algorithm of Lee and Tag (1990) 

executed five steps that used AVHRR MIR and TIR data to determine whether the brightness 

temperature of a target pixel was anomalously elevated above that of its eight neighboring pixels. 

This spatial approach was the basis of the first automated volcanic hot spot detection algorithm 

applied in volcanology (Harris et al., 1995), following the methods of Lee and Tag (1990) and 

Langaas (1993), resulting in the development of the Volcanic Anomaly SofTware (VAST) 

algorithm (Higgins and Harris, 1997). Initially, VAST was tested using AVHRR data for Etna, 

Vulcano, Stromboli, and Lipari volcanoes (Harris et al., 1995; Higgins and Harris, 1997), as well 
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as wildfires in Australia (Harris, 1996), and was designed to detect thermally anomalous pixels by 

comparing the temperature difference (∆T) for each pixel with the mean from its surrounding eight 

pixels. The algorithm was later adapted to GOES data of Hawai’i (Harris et al., 2001), by 

highlighting pixels with a ΔT that was greater than the ΔT mean plus 3.3σ for a 5-pixel-wide box 

surrounding a 10 × 10 pixel target zone. Since the development of VAST, other algorithms have 

been designed based on the similar principles and operations adopting different criteria for the 

pixel-wide box localization and dimension and ΔT threshold choices (e.g. Murphy et al., 2011). 

Many algorithms have been implemented for local-to-regional monitoring purposes including 

AVHRR-based monitoring the volcanoes of Mexico (Galindo and Dominguez, 2002), Central 

America (Webley et al., 2008), and Japan (Kaneko et al., 2002).  

3.2.2 Spectral Approaches 

Thermal anomaly detection algorithms using a spectral analysis were first developed in the 

1980s using AVHRR data to automatically detect wildfires (e.g., Flannigan and Vonder Haar 

1986; Kaufman et al. 1990; Kennedy et al. 1994). These rely upon a data from at least two distinct 

spectral regions where the thermal flux from high temperature source can vary over orders of 

magnitude (Figure 1). They operate by setting a threshold and highlighting any values that 

exceeded this threshold. For example, Kaufman et al. (1990) used three thresholds: (1) MIRT ≥ 316 

K, (2) ΔT ≥ 10 K, and (3) TIRT > 250 K to find thermally anomalous pixels. These thresholds 

ensured that (1) the pixel was hot, (2) a sub-pixel hot spot was present, and (3) the pixel was cloud 

free. Every subsequent algorithm varies the level of the set thresholds, setting different values 

depending on the region monitored. These early algorithms performed well but were limited to the 

specific regions for which they were developed (Justice and Dowty 1994). 
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A volcano-targeted single-step spectral algorithm was developed by Di Bello et al. (2004) 

for Mt. Etna, Italy. The results highlighted that a simple single-step threshold of ΔT > 10 K 

produced hundreds of false detections. A more robust spectral approach applied to volcano thermal 

anomaly detection was developed by Harris et al. (2002) who introduced a multi-step threshold 

algorithm to detect anomalies in GOES data. The initial algorithms used the reflective, ΔT, MIR, 

and TIR properties of the pixel and its background to assess anomalies and probabilities. 

Perhaps the most well known and widely used spectral algorithm is MODVOLC (Flynn et 

al. 2002). It was designed using a limited operational constraint to detect volcanic thermal 

anomalies on a global scale in MODIS data (Wright et al. 2004). Because of the simplicity of 

algorithm and the longevity of the MODIS sensors, MODVOLC results have been widely used, 

contributing to activity reports by the Smithsonian Institute’s Global Volcanism Program (GVP), 

as well as numerous individual volcano studies, for example, Anatahan (Wright et al. 2005), Mt. 

Belinda (Patrick et al. 2005), Etna (Laiolo et al., 2019), Melanesia (Rothery et al. 2005), Pacaya 

(Gonzalez-Santana et al., 2022) Stromboli (Ripepe et al. 2005), Fuego (Lyons et al. 2010), and 

Vanuatu (Coppola et al., 2016b). 

3.2.3 Temporal Approaches 

Thermal anomaly detection algorithms using temporal approaches were developed to 

detect variations in pixel brightness temperature from that of the baseline temperature in long time-

series data. These have been effective for a variety of applications including detection of volcanic 

ash clouds, dust storms, wildland fires, and earthquake-related thermal anomalies (Hua et al., 2016; 

Jiao et al., 2021). Tramutoli (1998) originally proposed a temporal technique named the Robust 
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AVHRR Technique (RAT) to minimize the effects that different geographical and seasonal 

conditions have on fixed spatial and spectral algorithms.  

Temporal algorithms analyze an archive of data to evaluate how the temperature for a 

specific pixel changes through time, assessing variation caused by seasonal and atmospheric 

effects. By comparing the pixel’s current temperature to the temperature history of that same pixel, 

divergence can be detected. Given that exactly the same pixel needs to be considered through time, 

the technique requires precise, sub-pixel location accuracy, and excellent image-to-image 

registration (Tramutoli et al., 2001; Pergola and Tramutoli, 2003). AVHRR data for Etna, showed 

how the method could be used with reflected (AVHRR band 1) data to detect ash clouds, 

developing an index named the Statistical Normalized Albedo Excess (Pergola et al., 2001). 

Additionally, the Absolutely Local Index of Change of the Environment (ALICE) that used TIR 

(AVHRR band 4) data was developed to detect possible thermal anomalies associated with seismic 

activity (Pergola et al., 2001). Similar techniques were used with MIR (AVHRR band 3B) data to 

detect lava flow activity on Mt. Etna through application of the ALICE index (Pergola et al., 2004; 

Di Bello et al., 2004; Pergola et al. 2009; Pergola et al. 2008; Yuhaniz and Vladimirova, 2009). 

3.2.4 Hybrid Approaches 

Combining more than one of these approaches allows the individual limitations associated 

with each to be minimized. Advanced hybrid algorithms have been developed applying a temporal 

approach to spatial features (e.g., Ramsey et al., 2023; Koeppen et al., 2011). Other algorithms 

combine both spectral and spatial principles based on multiple fixed and statistical thresholds such 

as MIROVA used to identify anomalies in MODIS data (Coppola et al. 2016a; 2020) and 

HOTSAT used with SEVIRI data (Ganci et al., 2011). More recently, advanced AI techniques 
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have been proposed to replicate the human visual system processing scheme and reduce the errors 

in statistical approaches to detect thermal anomalies in TIR data. For example, Corradino et al., 

(2023) used both spectral and spatial information with deep convolutional neural networks (CNNs) 

to identify thermal anomalies over twenty years at Vulcano, Italy. 

3.3 Prior Accuracy 

Regardless of the general approach to identifying thermally elevated pixels in an infrared 

image, every algorithm aims to detect the greatest number of true thermal anomalies by minimizing 

errors related to false positives. This goal is crucial to perform operationally over a global scale 

under widely varying conditions. In order to evaluate the algorithm performance, it is fundamental 

to create a validation and target dataset using ground truth. The latter is created by identifying and 

manually labelling true anomalies in each testing image by visual inspection. However, defining 

if a pixel is a true anomaly is not a trivial task, which led past efforts to adopt three main strategies 

to compute algorithms accuracy.  

The first is more qualitative and is based on the visualization and correlation of the time 

series of thermal-related variables, such as the total number of detected anomalies, with the 

corresponding time series of a reference ground truth. The latter can be either independent datasets, 

e.g. MYVOLC (Hirn et al., 2008), or the historical sequence of known thermal events, (e.g. 

MODVOLC (Flynn et al., 2002) and (Wright et al., 2002) as well as ASTAD (Ramsey et al., 2023), 

which has a reported pre/co-eruptive accuracy of ∼81%). 

The second strategy consists in evaluating the algorithm capability of identifying the 

presence of real thermal anomalies in the image. Thus, in this case, the accuracy is computed based 

on the percentage of successful detections and false detection (i.e., commission error). Successful 
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detection occurs if the algorithm detects at least one anomaly in an image that contains true 

anomalies. This metric is expressed in terms of omitted detections (i.e. the complementary of 

successful detections). False detection occurs where the algorithm detects an anomaly in an image 

that has no true anomaly. Most of the hotspot detection algorithms adopt this strategy for the 

performance evaluation, however, require a large validation dataset. MIROVA reports 10% of 

omitted detections and 5% of false detections (Coppola et al., 2016a); the performance of FIRMS 

algorithm has been evaluated in different study cases showing a commission error from 20% to 

85% depending on the VRP intensity (Fu et al., 2020) and an overall accuracy of MODIS ranged 

from 0.6% to 23.4% and VIIRS S-NPP from 1.3% to 25.6% (Coskuner 2022). 

The third strategy consists in evaluating the algorithm capability to provide finer scale 

information about the thermally anomalous area in the image. For example, detecting all the pixels 

that are true anomalies in each image (high recall) and minimizing false positive detections (high 

precision). In this case, the algorithm performance is based on four main indices, namely precision, 

recall, F1-score, and the global accuracy (i.e., the correct prediction of anomaly/background pixels 

over the total number of pixels). Because the process of creating the target dataset is time 

consuming for a large dataset, very few hot spot detection algorithms have adopted this strategy. 

Among them, ASTAD-ML (Corradino et al., 2023) reported precision, recall, F1 score and global 

accuracy of 87%, 85%, 86%, and 99%, respectively. 

 

4 Elevated Temperature Features (ETF) Algorithm Testing 

The elevated temperature features (ETF) algorithm for SBG must rapidly and accurately 

detect thermal change in some of Earth’s most dynamic processes (i.e., volcanic activity, wildland 



SBG LEVEL-3 ELEVATED TEMPERATURE FEATURES (ETF) ATBD 

19 

fires) with a low rate of false positives. Over twenty different algorithms previously developed by 

the earth science community were considered and a subset of those selected for further testing. 

This testing approach and the results are first described below with the final ETF algorithm 

implementation presented in §4.6. 

4.1 Test Data Creation 

Five simulated OTTER datasets were created from airborne MASTER data using the pre-

existing MASTER wavelengths or weighted band averages for the OTTER band center positions 

that did not align with those of MASTER (Figure 3). The data were also spatially resampled to the 

planned resolution of OTTER and the atmospheric correction was modified for the performance 

characteristics (e.g., FPA response) and viewing geometry of OTTER. These simulated data were 

chosen to test many of the SBG geology higher level data products and therefore include data with 

known thermal anomalies others with no thermally elevated areas. The latter included 

compositionally varied targets (e.g., Kelso Dunes, Yosemite National Park) for testing the Surface 

Mineralogy (SM) product algorithms. However, here they served as null test locations for the ETF 

algorithm. Both day and night time datasets were utilized.  
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Figure 3: False color image data (11.35, 9.07, 8.32 µm: RGB) of the simulated OTTER data used in the 

ETF algorithm testing process. 

 

4.2 Algorithm Testing Criteria 

Twenty six previously developed algorithms were considered across the different 

categories (i.e., contextual, fixed, temporal), classifications (i.e., spatial, spectral, temporal), and 

coverage (i.e., global, targeted) (Table 4). This list was then down selected based on the following 

criteria based on the mission objectives of SBG (in order of priority): 

1. Openly available without restrictions – following NASA open science, open data 

initiatives (TOPS) 

2. Applicable on a global scale 

3. Only require MIR and TIR data  

4. Computationally fast 

5. No predetermined knowledge of the likely location of anomalies is required 

6. Limited use of temporal classifies in the automation process 

 

Table 4: Previously developed thermal anomaly detection algorithms considered for ETF testing. Green: 

selected for initial testing, orange: potential expanded testing, white: not considered 

Algorithm Type Classification Sensor Bands Coverage Reference 

ASTAD 
Contextual, 
Temporal 

Spatial, 
Temporal ASTER TIR Global Ramsey et al. (2023) 

ASTAD-ML 
Machine 
Learning Spatial  ASTER TIR Global Corradino et al. 2023 

ASTAD-ML (NTI) 
Machine 
Learning Spatial  ASTER 

MIR, 
TIR Global Corradino et al. 2023 

ASTER ID   ASTER TIR Global  Urai and Pieri (2011) 
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AVA   ASTER TIR Global  Linick et al. (2014) 

AVHOTRR   
AVHRR, 
SEVIRI 

MIR, 
TIR 

Specific 
Targets Lombardo et al. (2016) 

AVTOD Contextual Spatial ASTER TIR Americas Reath et al. (2019) 

ECOHOT 
Contextual, 
Temporal 

Spatial, 
Spectral, 
Temporal 

ECO-
STRESS TIR Global Hulley et al. (2018) 

FIRMS Contextual Spectral 
VIIRS, 
MODIS 

MIR, 
TIR Global Davies et al. (2008) 

HOTSAT 
Contextual, 
Fixed Spectral, Spatial 

MODIS, 
SEVIRI 

MIR, 
TIR 

Europe/Afri
ca Ganci et al. (2011) 

HOTVOLC Contextual Spectral, Spatial SEVIRI 
MIR, 
TIR 

Europe/Afri
ca Gouhier et al. (2016) 

MIROVA 
Contextual, 
Fixed Spectral, Spatial MODIS 

MIR, 
TIR Global  Coppola et al. (2016) 

MODLEN 
Contextual, 
Fixed Spectral, Spatial MODIS 

MIR, 
TIR Global Kervyn et al. (2006) 

MODVOLC Fixed Spectral MODIS 
MIR, 
TIR Global 

Flynn et al. (2002) and Wright et 
al. (2002) 

MODVOLC2 
Temporal, 
Fixed 

Spectral, 
Temporal MODIS 

MIR, 
TIR Global Koeppen and Wright (2011) 

MOUNTS 
Contextual, 
Fixed Spectral, Spatial MSI SWIR Global  Valade et al. (2019) 

MYVOLC 
Contextual, 
Fixed Spectral, Spatial 

MODIS, 
ASTER 

SWIR, 
MIR, 
TIR Global Hirn et al. (2008) 

NHI Fixed Spectral MSI 
NIR, 
SWIR Global  Marchese et al., (2019) 

NIGHTFIRE 
Contextual, 
Temporal Temporal VIIRS 

SWIR, 
MIR Global Elvidge et al. (2013) 

OKMOK 
Contextual, 
Temporal 

Spatial, 
Temporal 

AVHRR, 
MODIS, 
VIIRS 

MIR, 
TIR N. Pacific  Dean et al. (1998) 

RAT/RST 
(RETIRA) 

Contextual, 
Temporal 

Spatial, 
Temporal 

AVHRR, 
MODIS, 
SEVIRI, 
ASTER 

MIR, 
TIR 

Specific 
Targets Tramutoli (1998) 

REALVOLC Contextual Temporal MODIS 
MIR, 
TIR 

Asia and 
Americas Kaneko et al. (2010) 

RF 
Machine 
Learning Spectral MSI 

VIS, 
NIR, 
SWIR 

Specific 
Targets Corradino et al., (2022) 

VAST Contextual Spatial AVHRR 
MIR, 
TIR Global Harris et al. (1995) 

VOLCVIEW   

AVHRR, 
MODIS, 
VIIRS, 
GOES 

MIR, 
TIR Pacific  Schneider et al. (2014) 

VOLSATVIEW   

AVHRR, 
MODIS, 
VIIRS 

MIR, 
TIR N. Pacific Gordeev et al. (2016) 
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4.3 Algorithm Selection for Testing 

Based on these criteria, six initial algorithms were selected for the first set of testing (green in 

Table 4) and five others were selected for possible expanded testing (orange in Table 4). These 

algorithms were chosen first based on open access and availability. The initial selection includes 

algorithms that span the entire classification schemes and types currently available. Further, 

algorithms that could be applied over global scales, used both MIR and TIR data, and were 

computationally fast were given priority. Algorithms that require large quantities of prior 

knowledge or large time series were not considered. As a result, algorithms that solely rely upon 

temporal classification schemes were eliminated. The algorithms initially selected were then tested 

on the simulated data to evaluate the accuracy, precision, speed, and errors. A second subset of 

algorithms (highlighted in orange in Table 4) were selected for future expanded testing if required. 

Algorithms not highlighted in Table 4 were determined to be either not  appropriate for the SBG-

TIR mission based on the selection criteria or they were similar to the algorithms already 

highlighted.  

4.3.1 Subset for Expanded Evaluation 

The down selection processes highlighted six candidate algorithms, chosen based on the 

criteria outlined in section 4 and represent the range of algorithm types and classes that are 

applicable to the SBG mission. The six algorithms selected for evaluation are: ASTAD, ASTAD-

ML, ASTAD-ML (NTI), ECOHOT, FIRMS, and MIROVA. These have been published and have 

well established lineages, but not all have been used operationally. 

ASTAD is the most complex statistically based approach that automatically detects the 

entire temperature range of thermal anomalies in both day and night ASTER TIR data (Ramsey et 



SBG LEVEL-3 ELEVATED TEMPERATURE FEATURES (ETF) ATBD 

23 

al., 2023). Significantly, ASTAD also produces a very low percentage of false positives and is 

excellent for extracting subtle (< 2 K) thermal anomalies. The algorithm contains four main steps: 

(1) image pre-processing, (2) background normalization, (3) Gabor-based filtering, and (4) 

anomaly identification. It also addresses issues that historically have plagued past algorithms 

applied to high spatial resolution TIR data (e.g., clouds, gas plumes, solar-heated slopes in daytime 

TIR data, etc.). 

ASTAD-ML uses a convolutional neural network (CNN) deep learning model, whose 

structure is inspired by the brain's primary visual cortex allowing it to replicate the way in which 

it detects thermal anomalies in an image (Corradino et al., 2023). CNN exploits deep, locally 

connected layers to extract discriminative features (e.g., the spatial distribution of thermal 

anomalies) and classifies pixels in anomalies and background. The ASTAD-ML model is a 

supervised CNN, i.e. UNET (Ronneberger et al., 2015), and it was trained on ASTER TIR Band 

13 (10.25–10.95 µm) data using the results from the original ASTAD study (Ramsey et al., 2023) 

for the labeling phase. Here, the ASTAD-ML trained model is applied to the simulated data using 

the closest available SBG band to ASTER TIR Band 13. Importantly, no attempt was made to 

modify or retrain the model using the new datasets. Therefore, results are expected to be worse 

than those using ASTER-based training and ASTER test data. A variation of the ASTAD-ML 

approach is the ASTAD-ML (NTI) was also tested. Rather than using a single TIR band, the 

Normalized Thermal Index (NTI), computed using one MIR and TIR band (Wright et al., 2002), 

was tested as the input to the ML model. Any ML-based approach chosen for SBG data product 

generation will require further testing prior to the SBG launch using larger datasets such as MODIS 

or VIIRS. These results can be refined during the checkout phase of the SBG mission to further 

improve its performances.  
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The ECOHOT algorithm is based on the ECOSTRESS cloud detection algorithm, 

ECOCLOUD (Hulley, 2018) but adapted for hot temperature anomalies. The algorithm uses a 

hybrid spatio-temporal statistical method in which thresholds are determined dynamically based 

on location, time of day, and time of year. The algorithm derives its heritage from a Bayesian 

classification scheme used for cloud detection for the Advanced Along Track Scanning 

Radiometer (AATSR) (Bulgin et al. 2014; Merchant et al. 2014), and its successor the Sea and 

Land Surface Temperature Radiometer (SLSTR). The algorithm can identify both cold (i.e. cloud) 

and hot temperature anomalies by comparing observed brightness temperatures in the longwave 

IR (10-12µm) with a set of global Look Up Tables (LUTs) derived from simulated data. The 

RTTOV radiative transfer model was used to simulate clear-sky brightness temperatures over a 

range of atmospheric conditions, surface emissivities, and temperatures using a combination of 

numerical weather prediction data (GEOS5) and the ASTER Global Emissivity Dataset (GED) 

(Hulley et al. 2015). The observed brightness temperatures are then compared to interpolated 

values of the LUTs (in time, space) corresponding to the observed scene location and time, and 

pixels are classified as anomalously cold/hot depending on a set of confidence level thresholds.  

FIRMS is divided into day and nighttime modules. Both detection modules rely on thermal 

sensitivity in the MIR and TIR regions, exploiting the emissive component of wildfires in the 2.2-

12 µm spectral range (Giglio et al., 2008). In both day and nighttime data, the radiometric signature 

of thermal anomalies produces a radiance or reflectance anomaly compared to the background. 

Thresholds were determined based on training data using histogram analysis of single channel and 

dual-channel (e.g., band ratios and differencing) data supported by detailed supervised pixel 

classification information. These supporting data (e.g., aerial photography and commercial 

satellite image data available in Google Earth) were used to validate fire activity originally 
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identified by the detection algorithm. The algorithm thresholds were defined for TOA reflectance 

data that had not been corrected for solar elevation. 

MIROVA is a multi-step hybrid anomaly detection approach combining spectral and 

spatial principles (Coppola et al., 2016a). In particular, the spectral analysis involves the use of 

both MIR and TIR bands to first compute NTI and then the Enhanced Thermal Index (ETI) is 

computed. This latter index enhances the presence of hotspots by emphasizing the MIR radiance 

response in presence of heat sources. A spatial analysis is then performed to detect as anomalous 

pixels having values higher than the surroundings based on the use of both fixed and contextual 

thresholds.  

4.4 Testing Methodology 

The algorithms were tested with minimal modification from the original development code 

to gain an operational evaluation of the algorithms. However, minor modifications were made for 

the spatial and spectral specifications of the SBG simulated dataset (e.g., band selection close to 

original wavelength used).   

 
4.5 Testing Results 

The results and the performance metrics are summarized by computing the evaluation 

metrics for all the test cases. A detailed focus is also presented for two of the cases: 1) an image 

with confirmed elevated temperatures (Hawaii-Night) and 2) the null hypothesis case having no 

anomalies (Kelso Dunes).   
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4.5.1 Hawaii Night 

Nighttime TIR airborne data were acquired over the Big Island of Hawaii on February 1, 

2018 at 08:01 UTC (January 31, 2021 at 22:01 HST). During this period two main eruption styles 

were observed at Kīlauea volcano: (i) an overturning lava lake in the Halema’uma’u Crater that 

was continuous from 2008 to 2018 (Patrick et al. 2013) and (ii) an extensive lava flow field 

emanating mainly from the Pu’u ’Ō’ō vent (Wolfe et al., 1987; Heliker and Mattox, 2003; Orr et 

al., 2013). These produced a large number of thermal anomalies in the image. Anomalous pixels 

were first identified manually to create the validation dataset from which all algorithm 

performances were assessed. All the algorithms detected the thermal anomalies in the lava flow 

field on the coastal plain to the south (Figure 4). However, there is a discrepancy between the 

algorithms for those anomalies located at the lava lake. For example, ASTAD found no anomalies, 

whereas FIRMS and MIROVA over estimated them in this region. This discrepancy is likely a 

result of the intermittent cloud over this region at the time of data acquisition. Retrieved 

temperatures of the anomalies are show in Figure 5. 
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Figure 1: Hawaii (night) thermal anomaly detections for the six algorithms tested. 
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Figure 2: Hawaii (night) retrieved temperatures with the detection mask (red) overlain for the six algorithms 

tested. 

 

4.5.2 Kelso Dunes 

Daytime TIR airborne data were acquired over the Kelso Dunes region, southern California 

on September 20, 1999 at 18:47 UTC (10:47 PDT). The dunes are composed of mostly quartz, 

plagioclase feldspar, and potassium feldspar minerals (Ramsey et al., 1999). This dataset was used 

as a null hypothesis case, to test the false positive rate of the algorithms over low emissivity (high 
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reflectance) surfaces. ASTAD and MIROVA correctly did not identify the presence of thermal 

anomalies. ASTAD-ML, ASTAD-ML (NTI), and ECOHOT found  <10 anomalies, whereas 

FIRMS incorrectly registered over two thousand anomalies.  

 

Figure 3: Kelso Dunes thermal anomaly detections for the six algorithms tested. 

 

4.5.3 Testing Assessment 

The testing of the thermal anomaly detection algorithms involved creating a validation 

dataset by manually selecting all anomalies in the Hawaii scene. Therefore, the final performance 
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metrics are subject to the accuracy of the manual anomaly classification. The performance analysis 

of each algorithm was summarized in tables reporting the accuracies. These included the true 

positives (TP, number of anomalous pixels correctly predicted), true negatives (TN, number of 

background pixels correctly predicted), false positives (FP, number of background pixels 

incorrectly predicted as anomalous), and false negatives (FN, number of anomalous pixels 

incorrectly predicted as background).  

These results were used to calculate evaluation metrics, namely the precision, F1-score, 

recall, and global accuracy with values ranging from 0 to 1. Precision, also called Positive 

Predictive Values (PPV), measures the probability that a predicted anomalous pixel is real and is 

inversely proportional to the number of false positives. This metric reflects the algorithm’s 

tendency in overestimating anomalies. A low value means that the number of false positive is high 

and thus that the algorithm detects more anomalous pixels than are real. Recall, also called True 

Positive Rate (TPR), measures the probability that a true anomalous pixel will be correctly 

predicted, and it is inversely proportional to the number of false negatives. This metric reflects the 

algorithm’s tendency in underestimating anomalies. A low value means that the number of false 

negatives is high and thus that the algorithm detects less anomalous pixels than are real. F1-score 

combines precision and recall into a single metric. It is a measure of algorithm’s accuracy and is 

particularly important if the testing dataset is unbalanced (i.e., far more samples belong to the 

negative class, which is the case for all our test data). The global accuracy measures the probability 

of making correct predictions without differentiating between positive and negative classes. 

Finally, we report the computation time to determine the best possible ETF candidates for the SBG 

mission. The greatest weight given to that choice is the F1-score because of the larger amount of 
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non-anomalous pixels, with precision also heavily favored to limit the number of false positive 

detections. 

The larger proportion of background pixels makes the datasets unbalanced; thus the global 

accuracy is mainly biased by the proportion that are correctly predicted (TN). This value is high 

(close to 1) for all the algorithms tested; however, it does not reflect the algorithm’s ability to 

accurately detect thermal anomalies. Therefore, we focus on the indexes where the TN are not 

counted, namely recall, precision, and the F1-score. Recall (TPR) shows the model’s capability of 

detecting the thermal anomalies (high value means low false negative detection). High recall 

values are obtained using FIRMS and MIROVA (0.87); whereas low values are obtained using 

ASTAD and ASTAD-ML (0.12 to 0.4) showing that they underestimate the number of anomalies 

(Table 5). Precision (PPV) shows a model’s capability in predicting thermal anomalies that are 

real. A high value means low false positive detection, thus reflecting the model tendency in 

overestimating anomalies. High values (low false positives) are shown for algorithms ASTAD, 

ASTAD-ML, ASTAD-ML (NTI) and ECOHOT (0.76 to 1), whereas the lowest values were found 

with FIRMS and MIROVA (0.3 to 0.4) showing that they overestimate the number of thermal 

anomalies (Figure 5). The F1-score is the harmonic mean of recall and precision and it provides 

the accuracy level for unbalanced datasets. The highest values (from 0.52 to 0.79) for this study 

case are produced by ECOHOT followed by FIRMS and ASTAD-ML (NTI). Computational speed 

was the quickest for FIRMS and MIROVA, followed by ECOHOT. As expected, the more detailed 

processing complexity of ASTAD made it slower. 
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Table 5: Hawaii (night) performance metrics  

Hawaii Night ASTAD FIRMS MIROVA ASTAD-ML ECOHOT ASTAD-ML (NTI) 
Precision 1.00000 0.38384 0.34473 0.96285 1.00000 0.75890 
F1 Score 0.22205 0.53410 0.49393 0.41689 0.79485 0.52490 

Recall 0.12489 0.87767 0.87083 0.26604 0.65954 0.40120 
Global  Accuracy 0.99905 0.99833 0.99806 0.99919 0.99963 0.99921 
Time (secs/pixel) 3.7 × 10-4 2.7 × 10-7 2.4 × 10-7 3.2 × 10-5 6.7 × 10-6 2.9 × 10-5 

 

In the Kelso Dunes study case, only the background class is present meaning that only the 

TN and FP can be computed (Table 6). FIRMS performs the worst having a lower accuracy and 

thus higher FP with a type 1 error of 1.45% (i.e., type 1 error = 1- global accuracy).  

 

Table 6. Kelso Dunes performance metrics  

Kelso Dunes ASTAD FIRMS MIROVA ASTAD-ML ECOHOT ASTAD-ML (NTI) 

Precision NaN NaN NaN NaN NaN NaN 
F1 Score NaN NaN NaN NaN NaN NaN 

Recall NaN NaN NaN NaN NaN NaN 
Global  Accuracy 1.00000 0.98547 1.00000 0.99996 0.99995 0.99997 
Time (secs/pixel) 6.0 × 10-4 8.0 × 10-7 5.8 × 10-7 3.8 × 10-5 2.4 × 10-5 3.9 × 10-5 

 

Finally, the overall testing results are considered for the algorithms performance evaluation 

phase. Thus, the overall TN, TP, FN and FP are computed from the five test images shown in 

Figure 3. In particular, because the primary goal is to quickly detect accurate thermal anomalies 

and reduce the number of false positive, precision is more heavily weighted. The highest precision 

values (0.22 to 0.5) are shown for ASTAD, ASTAD-ML and ASTAD-ML (NTI) meaning that 

less false positives are detected; whereas the lowest are computed with ECOHOT, FIRMS and 

MIROVA (0 to 0.13) meaning that they greatly overestimate the number of thermal anomalies 
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(Table 7). The highest recall values are obtained using FIRMS (0.6) and MIROVA (0.65) meaning 

they are better able to detect the real anomalies; whereas low values (0.2 to 0.3) are obtained using 

ASTAD, ASTAD-ML and ASTAD-ML (NTI) showing that they underestimate the number of real 

thermal anomalies. Generally speaking, the global accuracy is high for all the algorithms, however 

the capability to accurately detect a thermal anomaly is shown by F1-score. It is generally low for 

all the algorithms with the best performance given by ASTAD-ML (NTI) with 0.35. ASTAD, 

ASTAD-ML, and ASTAD-ML (NTI) have similar values for precision, recall and F1-score. The 

others show higher discrepancy (i.e., recall far higher than precision and F1-score) and thus a clear 

bias of those algorithms in overestimating. The timing values show that ASTAD is 

computationally the slowest, whereas FIRMS and MIROVA are three orders of magnitude faster. 

Table 7: Overall performance metrics 

Totals ASTAD FIRMS MIROVA ASTAD-ML ECOHOT ASTAD-ML (NTI) 
Precision 0.22836 0.10130 0.12944 0.49113 0.05075 0.42645 
F1 Score 0.21525 0.17526 0.21303 0.28822 0.09289 0.35230 

Recall 0.20357 0.64948 0.60140 0.20396 0.54711 0.30012 
Global  Accuracy 0.99949 0.99789 0.99847 0.99965 0.99631 0.99962 
Time (secs/pixel) 3.8 × 10-4 2.9 × 10-7 2.0 × 10-7 3.1 × 10-5 5.9 × 10-6 3.2 × 10-5 

 

 FIRMS and MIROVA (followed by ECOHOT) are the top candidates based solely on 

processing speed, with each having higher recall (lower false negatives) but lower precision 

(higher false positives) values. Conversely, the ASTAD suite are much better at minimizing false 

positives, but their speeds likely make them impractical for the ETF implementation. Finally, it 

should be noted that MIROVA was only tested using the first stage of the algorithm (NTI). Full 

implementation using the second stage (ETI) would likely improve the false positive rate, but also 

add to the processing time. This will be caried out in the planned second phase testing. 
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4.5.4 Algorithm Sensitivity to Instrument Performance 

The instrument is anticipated to have an NEΔT of 0.2 K at 300 K, which corresponds to an 

average NEΔL of 0.030917 Wm-2sr-2µm-1. To evaluate the sensitivity of the algorithms to a 

reduction in instrument performance on orbit the NEΔT is increase to 1.0 K at increments of 0.2 

K.  

Table 8: Overall change in performance metrics based on lower instrument performance 

0.2 K NEΔT           
 ASTAD FIRMS MIROVA ASTAD-ML ECOHOT ASTAD-ML (NTI) 

Precision 0.22836 0.10130 0.12944 0.49113 0.05075 0.42645 
F1 Score 0.21525 0.17526 0.21303 0.28822 0.09289 0.35230 

Recall 0.20357 0.64948 0.60140 0.20396 0.54711 0.30012 
Global  

Accuracy 0.99949 0.99789 0.99847 0.99965 0.99631 0.99962 

Time (s/pixel) 3.8 × 10-4 2.9 × 10-7 2.0 × 10-7 3.1 × 10-5 5.9 × 10-6 3.2 × 10-5 
              
1.0 K NEΔT       

       

Precision 0.21369 0.00335 0.34380 0.79407 0.00034 0.67289 
F1 Score 0.22592 0.00668 0.40346 0.30257 0.00069 0.40875 

Recall 0.23963 0.90461 0.48817 0.18689 0.99961 0.29352 
Global  

Accuracy 0.99943 0.90724 0.99950 0.99970 0.00069 0.99971 

Time (s/pixel) 3.8 × 10-4 2.9 × 10-7 2.0 × 10-7 3.1 × 10-5 5.9 × 10-6 3.2 × 10-5 
              
Percentage Change from 0.2 to 1.0 K NEΔT       

       

Precision -6.42407 -96.68904 165.60569 61.68224 -99.32030 57.78872 
F1 Score 4.95703 -96.18664 89.39117 4.97884 -99.25752 16.02328 

Recall 17.71381 39.28219 -18.82774 -8.36929 82.70732 -2.19912 
Global  

Accuracy -0.00600 -9.08417 0.10316 0.00500 -99.93123 0.00900 

Time (s/pixel) 0.0 0.0 0.0 0.0 0.0 0.0 
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Overall, the precision, F1 score, recall, and global accuracy of the ASTAD, MIROVA, 

ASTAD-ML, and ASTAD-NTI-ML algorithms either improved or remained the same (<10%) as 

a result of the instrument NEΔT increasing from 0.2 to 1.0 K. On the other hand, the precision, F1 

score, and global accuracy of the FIRMS and ECOHOT algorithms reduced dramatically by nearly 

100% in most cases as a result of instrument performance decreasing to 1.0 K NEΔT.  

 

4.6 Final SBG ETF Algorithm 

4.6.1 Data Inputs 

T.B.D. once final algorithm choice is determined 

4.6.2 Algorithm Limitations 

T.B.D. once final algorithm choice is determined 

4.6.3 ETF Workflow 

T.B.D. once final algorithm choice is determined 

4.6.4 Implementation Strategy for SBG Mission 

T.B.D. once final algorithm choice is determined 

  

4.7 Error Propagation 

T.B.D. once final algorithm choice is determined 
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4.8 Low Latency 

The ETF product will also be produced as a low latency (LL) product available within 24 

hours of data acquisition. All functional parameters of the algorithm described above will remain 

the same except that LL-ETF will operate on the at-sensor radiance as opposed to the surface 

radiance. Without atmospheric correction, the uncertainty in retrieved surface temperatures is 

expected to be higher. 

 

5 Uncertainty Quantification Analysis 

NASA has identified a major need to develop long-term, consistent products valid across 

multiple missions, with well-defined uncertainty statistics addressing specific Earth-science 

questions. These products are termed Earth System Data Records (ESDRs). 

 

 

6 Quality Control and Diagnostics 

T.B.D. once final algorithm choice is determined 
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7 Scientific Data Set (SDS) Variables 

Table 9: SDSs for the SBG L3 Elevated Temperature Features (ETF) product 

 Long Name Data Type Unit Field Data 
GROUP  L3_ELEVATED_TEMPERATURE_FEATURES 
Detects ETF Detections Int8 n/a 0 
Temp ETF Temperatures Float K NaN 
Accuracy Global Accuracy Float n/a 0 
QC Data Quality Int8 n/a 0 

 

 

8 Calibration/Validation Plans  

8.1 Pre-Launch Algorithm Calibration and Testing 

T.B.D. once final algorithm choice is determined 

 

8.1.1 Expanded Test Dataset 

T.B.D. once final algorithm choice is determined 

 

8.2 Post-Launch Anomaly Detection Validation Methodology 

T.B.D. once final algorithm choice is determined 

 
8.2.1 Ground-based Persistent Elevated Temperature Targets 

T.B.D. once final algorithm choice is determined 
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