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Abstract 
 

The 2017-2027 Decadal Survey for Earth Science and Applications from Space (ESAS 

2017) was released in January 2018. ESAS 2017 was driven by input from the scientific 

community and policy experts and provides a strategic vision for the next decade of Earth 

observation that informs federal agencies responsible for the planning and execution of civilian 

space-based Earth-system programs in the coming decade. These include the National Aeronautics 

and Space Administration (NASA), the National Oceanic and Atmospheric Administration 

(NOAA), and the U.S. Geological Survey (USGS). NASA has, thus far, utilized this document as 

a guide to inform exploration of new Earth mission concepts that are later considered as candidates 

for fully funded missions. High-priority emphasis areas and targeted observables include global-

scale Earth science questions related to hydrology, ecosystems, weather, climate, and solid earth. 

One of the Designated Observables (DO’s) identified by ESAS 2017 was Surface Biology and 

Geology (SBG) with a goal to acquire concurrent global hyperspectral visible to shortwave 

infrared (VSWIR; 380–2500 nm) and multispectral mid-wave and thermal infrared (MWIR: 3–5 

μm; TIR: 8–12 μm) image data at high spatial resolution (~30 m in the VSWIR and ~ 60 m in the 

TIR) at sub-monthly temporal resolution globally. The final sensor characteristics will be 

determined during the mission formulation phase, but ESAS 2017 provides guidance for a VSWIR 

instrument with 30–45 m pixel resolution, ≤16 day global revisit, SNR > 400 in the VNIR, SNR 

> 250 in the SWIR, and 10 nm sampling in the range 380–2500 nm. It also recommends a TIR 

instrument with more than five channels in 8–12 μm, and at least one channel at 4 μm, ≤60 m pixel 

resolution, ≤3 day global revisit, and noise equivalent delta temperature (NEdT) ≤0.2 K (NASEM, 

2019; Schimel and Poulter, 2020). Alone, SBG will provide a comprehensive global monitoring 

for multiple scientific disciplines. Complemented with systems like Landsat and Sentinel-2 

VSWIR, global change processes with faster than 16-day global change rates can be mapped. 

Further, complimented with planned TIR systems such as LSTM and TRISHNA, the temporal 

revisit could be as frequent as 1-day at the equator, making the system excellent for tracking 

dynamic thermal features and hazards. This document describes the planned Level-3 Surface 

Mineralogy (SM) product for the SBG TIR data. 
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1 Introduction 

The Surface Biology and Geology (SBG) thermal infrared (TIR) instrument – termed the 

Observing Terrestrial Thermal Emission Radiometer (OTTER) consists of a TIR multispectral 

scanner with six spectral bands operating between 8.0 and 13.0 µm and two mid-infrared (MIR) 

bands between 3.0 and 5.0 µm, with a 60 m pixel resolution, an equatorial three day revisit, and a 

noise equivalent delta temperature (NEdT) ≤0.2 K (NASEM, 2019; Schimel and Poulter, 2020). 

The TIR data will be acquired with a wide swath width of 935 km (60°) from an altitude of ~700 

km. OTTER instrument design and data derive their heritage from the ECOSTRESS instrument, 

which is a five-channel multispectral TIR scanner that was launched to the International Space 

Station (ISS) in June 2018. ECOSTRESS has a 70-m spatial resolution with a wide swath width 

and revisit time that is variable between 3-5 days on average (Table 1). 

Table 1: SBG measurement characteristics compared to other operational and planned (*) spaceborne TIR 
instruments 

Instrument Platform Resolution (m) Revisit 
(days) 

Daytime 
overpass 

TIR bands (8-
12.5 µm) Launch year 

OTTER SBG 60 3 12:30 6 2028* 

ECOSTRESS ISS 38 × 68 3-5 Variable 5 2018 

LSTM  50 4 13:00 5 2028* 

TRISHNA  57 2-3 13:00 4 2025* 

ASTER Terra  90 16 10:30 5 1999 

ETM+/TIRS Landsat 7/8 60-100 16 10:11 1/2 1999/2013 

VIIRS Suomi-NPP 750 Daily 1:30 / 13:30 4 2011 

MODIS Terra/Aqua 1000 Daily 10:30 / 13:30 3 1999/2002 
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GOES Multiple 4000 Daily Every 15 min 2 2000 

 

This document outlines the theory and methodology for generating the OTTER Level-3 

(L3) surface mineralogy (SM) product. The SM product uses the L2 TIR surface emissivity data 

as input together with a spectral library of the most common Earth surface minerals acquired in 

emission in the laboratory at 2 cm-1 resolution (Christensen et al., 2000). Most silicates, carbonates, 

and other rock-forming minerals have diagnostic spectral features in the TIR regions characterized 

by the strongest absorption bands also known as Reststrahlen features (Figure 1). The SM 

algorithm uses the principal of linear spectral mixing in TIR region where the larger absorption 

coefficients typical of most rock-forming minerals limit photon transmission and scattering within 

the mineral grains. The emitted spectrum, therefore, has spectral features in linear proportion to 

the areal abundance of those minerals in the unknown sample (Ramsey and Christensen, 1998). In 

contrast, this scattering is more prevalent in the visible short-wave infrared (VSWIR) causing non-

linearity in the reflectance spectrum and requiring more complex mapping approaches to mineral 

identification (Clark et al., 2003, Connelly et al., 2021).  

 The SM product is applied to the at-surface TIR emissivity data derived from the L2 land 

surface temperature and emissivity (LSTE) product. It will be applied to a limited subset of 

OTTER data determined using a seasonally adjusted global emissivity mask (e.g., Hulley et al., 

2015). Only OTTER data with an average emissivity of  < 0.92 (avoiding significant vegetation 

cover) and an average temperature > 0 C (avoiding snow and ice), which corresponds to ~ 30% of 

the Earth’s land surface, will be mapped using the SM algorithm. The emission spectrum from any 

pixel meeting these criteria is modeled using the pre-determined spectral library as input and 

producing a best-fit suite of mineral endmember images plus their corresponding residual error 
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images. A root-mean-squared (RMS) error image is also produced to assess the overall goodness-

of-fit of the model. Finally, a weight percent silica (WPS) image is also produced using the 

approach of Hook et al. (2005).  

 
Figure 1: TIR (8.0 – 13.0 µm) spectral emissivity of quartz and microcline (potassium feldspar) showing 
the diagnostic Reststrahlen emissivity features for both minerals. The inclusion of a sixth TIR band at ~ 
10.3 mm allows better discrimination of these primary rock-forming minerals using the SM algorithm. 
Data from: ASU Spectral Library (Christensen et al., 2000). 

 

The SM data will be assessed and validated throughout the mission using pseudo-invariant 

sand dune sites in the Western United States, Africa, and China (Hulley and Baldridge, 2013; 

Helder et al., 2010). Sand dunes present ideal calibration sites for TIR emissivity-based 

compositional studies because they have well-mixed, unimodal surfaces with low percentages of 

vegetation and shadows (Ramsey et al., 1999; Scheidt and Ramsey, 2010; Scheidt et al., 2011). 
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The remainder of the document will discuss the SBG instrument characteristics, provide a 

background on TIR remote sensing, give a full description and background on the SM algorithm, 

provide quality assessment, discuss numerical simulation studies and, finally, outline a validation 

plan. 

2 SBG Instrument Characteristics  

2.1 Band positions 
 

The TIR instrument will acquire data from a sun-synchronous orbit of ~700 km with 60m 

spatial resolution in eight spectral bands with two of those located in the MIR and six in the TIR 

region of the electromagnetic spectrum between 3 and 13 µm (Figure 2). The center position and 

width of each band is provided in Table 2. The positions of the first three TIR bands closely match 

those of the ASTER sensor (ASTER bands 10 – 12), whereas the longest two TIR bands match 

those of the MODIS sensor (MODIS bands 31-32), which are typically used for “split-window” 

type temperature applications (Brown and Minnett 1999; Coll and Caselles 1997; Prata 1994; Price 

1984; Wan and Dozier 1996; Yu et al. 2008). The OTTER band centered at 10.3 µm was added 

early in Phase A in order to more accurately detect surface mineralogy (e.g., distinguishing 

between silicate feldspars and quartz) as well as sulfate aerosols conversion in volcanic plumes 

(Figure 3). The two MIR bands are present to detect a larger range of high surface temperatures 

(Table 2) without saturating (e.g., 500 – 1200 K) as well as the potential of elevated CO2 emission 

sources using the 4.8 µm band. 

 
It is expected that small adjustments to the band positions, widths, and transmission will 

be made based on ongoing engineering filter performance capabilities and finalized once the filters 

are fabricated. 
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Figure 2: SBG boxcar filters for two MIR bands and six TIR bands from 3.8-12.5 microns with a typical 
atmospheric transmittance spectrum in gray highlighting the atmospheric window regions. Note the 
spectral width and position of the filters are nearly finalized (see Table 2), however the spectral shape will 
be determined after the detectors are fabricated. 

 
 

 
Figure 3: Benefits of these additional bands include improved sensitivity in discriminating different 
rock types, for example in this case in Sierra Nevada Mountains we can discriminate felsic and 
mafic minerals and have a result similar to that of HyTES, a hyperspectral TIR sensors. 
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2.2 Radiometer 
 

The TIR instrument will operate as a push-whisk mapper very similar to ECOSTRESS with 

256 pixels in the cross-whisk direction for each spectral channel. As the spacecraft moves forward, 

the scan mirror sweeps the focal plane image 68.8° across nadir in the cross-track direction, which 

enables a wide swath (935 km) from the spacecraft altitude of ~700 km. Each sweep is 256-pixels 

wide with the different spectral bands are swept across a given point on the ground sequentially. 

The scan mirror rotates at a constant angular speed and images two on-board blackbody targets at 

300 K and 340 K with each cross-track sweep every 1.29 seconds to provide gain and offset 

calibrations. 
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Table 2: SBG band positions and characteristics 

Band # 
Center 
Wavelength 
(µm) 

Spectral Width 
(FWHM) (nm) 

Tolerance 
Center 
Wavelength (± 
nm) 

Tolerance 
Spectral 
Width (±nm) 

Knowledge 
Center 
Wavelength 
(±nm) 

Knowledge 
Spectral Width 
(±nm) 

Accuracy 
(Kelvin) NEΔT (K) Range (K) 

MIR-1 3.98 20 50 10 10 10 ≤3@750 ≤0.3@750 700-1200 

MIR-2 4.8 150 100 50 20 20 ≤1@450 ≤0.2@450 400-800 

TIR-1 8.32 300 100 50 20 20 ≤0.5@275 ≤0.2@275 200-500 

TIR-2 8.63 300 100 50 20 20 ≤0.5@275 ≤0.2@275 200-500 

TIR-3 9.07 300 100 50 20 20 ≤0.5@275 ≤0.2@275 200-500 

TIR-4 10.30 300 50 50 20 20 ≤0.5@275 ≤0.2@275 200-500 

TIR-5 11.35 500 100 50 20 20 ≤0.5@275 ≤0.2@275 200-500 

TIR-6 12.05 500 100 50 20 20 ≤0.5@275 ≤0.2@275 200-500 

 



SBG LEVEL-3 SURFACE MINERALOGY (SM) ATBD 

8 

Table 3: SBG TIR instrument and measurement characteristics 

Spectral 
Bands (µm) 3.95, 4.8, 8.32, 8.63, 9.07, 10.3, 11.35, 12.05 

Bandwidth (nm) 20, 150, 300, 300, 300, 300, 500, 500 
Accuracy at 300 K <0.01 µm 
Radiometric 
Range TIR (8-12.5 µm) bands (200 - 500 K) 

MIR 4.8 µm band (400 - 800 K)  
MIR 3.95 µm band (700 -1200 K) 

Resolution < 0.05 K, linear quantization to 14 bits 
Accuracy < 0.5 K 3-sigma at 275 K 
Precision (NEdT) < 0.2 K 
Linearity > 99% characterized to 0.1 % 
Spatial 
IFOV 60m 
MTF > 0.65 at FNy 
Scan Type Push-Whisk 
Swath Width at 665-km altitude 935 km (± 34.4°) 
Cross Track Samples 10,000 (check) 
Swath Length 10,000 (check) 
Down Track Samples 256 
Band to Band Co-Registration 0.2 pixels (12 m) 
Pointing Knowledge 10 arcsec (0.5 pixels) 
Temporal 
Orbit Crossing Multiple 
Global Land Repeat Multiple 
On Orbit Calibration 
Lunar views 1 per month {radiometric} 
Blackbody views 1 per scan {radiometric} 
Deep Space views 1 per scan {radiometric} 
Surface Cal Experiments 2 (day/night) every 5 days {radiometric}  
Spectral Surface Cal Experiments 1 per year 
Data Collection 
Time Coverage Day and Night 
Land Coverage Land surface above sea level 
Water Coverage n/a  
Open Ocean n/a 
Compression 2:1 lossless 
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3 Theory 

3.1 Mid-wave and Thermal Infrared Remote Sensing Background 

The at-sensor measured radiance in the infrared region (3–13 µm) consists of a 

combination of different terms from surface emission, solar reflection, and atmospheric emission 

and attenuation. The Earth-emitted radiance is a function of the temperature and emissivity of the 

surface, which is then attenuated by the atmosphere on its path to the satellite. The emissivity of 

an isothermal, homogeneous emitter is defined as the ratio of the actual emitted radiance to the 

radiance emitted from a blackbody (Figure 1) at the same thermodynamic temperature (Norman 

and Becker 1995), ϵλ= Rλ/Bλ. Emissivity is an intrinsic property of the surface material and is an 

independent measurement from the surface temperature, which varies with irradiance, local 

atmospheric conditions, time of day, and specific conditions causing elevated temperature (e.g., 

wildfires, volcanic eruptions, etc.). The emissivity of most natural Earth surfaces varies from ~0.7 

to close to 1.0, for the TIR wavelength (8–13 μm) for spatial scales <100 m. Narrowband 

emissivities less than 0.85 are typical for most desert and semi-arid areas due to the strong quartz 

absorption feature (Reststrahlen band) between the 8.0 and 9.5 μm, whereas the emissivity of green 

vegetation and water are generally greater than 0.95 and spectrally flat in the TIR. Dry and 

senesced vegetation as well as ice and snow can have lower emissivity values in the wavelengths 

longer than 10 μm. 

The atmosphere also emits TIR radiation, a percentage of which reaches the sensor directly 

as "path radiance," whereas some amount is radiated downward to the surface (irradiance) and 

reflected back to the sensor. This is commonly known as the reflected downwelling sky irradiance. 

One effect of the sky irradiance is the reduction of the spectral contrast of the emitted surface 

radiance, due to Kirchhoff's law. Assuming the spectral variation in emissivity is small 
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(Lambertian assumption) and using Kirchhoff's law to express the hemispherical-directional 

reflectance as directional emissivity (ρλ=1-ϵλ), the at-sensor measured radiance in the infrared 

spectral region is a combination of three primary terms: the Earth-emitted radiance, reflected 

downwelling radiance (thermal + solar components), and total atmospheric path radiance (thermal 

+ solar components).  

𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜(𝜆𝜆, 𝜃𝜃) = 𝜏𝜏𝜆𝜆(𝜃𝜃) �𝜖𝜖𝜆𝜆𝐵𝐵(𝜆𝜆,𝑇𝑇𝑜𝑜) + 𝜌𝜌𝜆𝜆 �𝐿𝐿𝑜𝑜↓(𝜆𝜆, 𝜃𝜃) + 𝐿𝐿𝑡𝑡↓(𝜆𝜆,𝜃𝜃)�� + 𝐿𝐿𝑡𝑡↑(𝜆𝜆,𝜃𝜃) + +𝐿𝐿𝑜𝑜↑(𝜆𝜆, 𝜃𝜃)       (1) 

where: L(λ,θ) = at-sensor radiance, λ is wavelength, θ is the satellite viewing angle, ϵλ is the surface 

emissivity, ρλ is surface reflectance, B(λ,Ts) is the Planck function describing radiance emitted at 

surface temperature, Ts, Ls↓ is the total (diffuse and direct) downwelling solar radiance, Lt↓ is the 

downwelling thermal irradiance, τλ (θ) is the atmospheric transmittance, Ls↑ (λ,θ) is the upward 

path solar radiance, and Lt↑ (λ,θ) is the upward thermal path radiance reaching the sensor.  

The Temperature Emissivity Separation (TES) Algorithm originally created for ASTER 

TIR (Gillespie et al., 1998) data will be used to derive surface temperature and emissivity from the 

OTTER radiance data. The algorithm combines and improves upon some core features from 

previous temperature emissivity separation algorithms. TES combines the normalized emissivity 

method (NEM), the ratio, and the minimum-maximum difference (MMD) algorithm to retrieve 

temperature and a full emissivity spectrum. The NEM algorithm is used to estimate temperature 

and iteratively remove the sky irradiance, from which an emissivity spectrum is calculated, and 

then ratioed to their mean value in the ratio algorithm. At this point, only the shape of the emissivity 

spectrum is preserved, but not the amplitude. In order to compute an accurate temperature, the 

correct amplitude is then found by relating the minimum emissivity to the spectral contrast 

(MMD). Once the correct emissivity values are found, a final temperature can be calculated with 

the maximum emissivity value. Additional improvements involve a refinement of 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚  in the 
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NEM module and refining the correction for sky irradiance using the 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚-MMD final emissivity 

and temperature values. Numerical modeling studies showed that TES can recover temperatures 

to within 1.5 K and emissivity values to within 0.015 over most scenes, assuming well calibrated, 

accurate radiometric measurements with a minimum of noise (Gillespie et al. 1998). 

 

3.2  Compositional Detection in the TIR 

The emission spectra from laboratory samples or pixels in a TIR image that are comprised 

of more than one mineral reflect those mineral endmembers by a combination of their characteristic 

spectral features. Perhaps more importantly, under most circumstances, those features are a linear 

combination of the areal percentage of the mineral endmembers themselves (Figure 4). The 

assumption of linear mixing of thermal radiant energy is valid due to the fact that most geologically 

significant minerals have very high absorption coefficients in the TIR, resulting in a much shorter 

path length and less scattering for the emitted photons. As a result, the majority of the energy 

detected by a sensor has interacted with only one surface particle (Ramsey and Christensen, 1998, 

REFS).  
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Upon mixing, the spectral features 

from surface particles are retained in 

proportion to their areal extent. For 

example, Ramsey and Christensen (1998) 

showed this in spectra from Kelso Dunes, 

CA. The individual mineral grains in sand 

samples were separated using a heavy 

liquid technique, which proved to be only 

partially successful (Figure 4). 

Contamination of each spectrum by the 

other mineral is visible in the spectral 

features being most evident in the quartz 

spectrum, where 34% feldspar still 

remained. This contamination shows as a 

reduction in contrast of the primary 

absorption band at 1150 cm-1, the development of band shoulder at 1000 cm-1, and several smaller 

absorption bands between 600 cm-1 and 700 cm-1. 

 

3.2.1 Spectral Mixture Analysis (SMA) 

This allows for a relatively straight forward approach to spectral analysis using some 

variation of linear spectral mixture analysis (Heinz 2001; Somers et al. 2011; Tompkins et al. 

1997). This can be summarized by equation 2. 

𝜀𝜀(𝜆𝜆)𝑚𝑚𝑚𝑚𝑚𝑚 = ∑ (𝜁𝜁𝑚𝑚 · 𝜀𝜀(𝜆𝜆)𝑚𝑚)
𝜂𝜂
𝑚𝑚=1 + 𝛿𝛿(𝜆𝜆);      〈1〉     ∑  𝜁𝜁𝑚𝑚 = 1.0𝜂𝜂

𝑚𝑚=1 ;       〈2〉    𝜁𝜁𝑚𝑚 ≥ 0  (2) 

 
Figure 4: Emission spectra of the best-case separation of 
feldspar and quartz derived from the heavy-liquid 
technique. (A) Feldspar. (B) Quartz. Each spectrum is 
plotted with a pure library end member for comparison. 
From Ramsey and Christensen (1998). 
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Where, η is the number of endmembers modeled, ζi is the areal fraction of the ith endmember’s 

emissivity (ε(λ)i) and δ(λ) is the residual difference between the measured and modeled emissivity 

at wavelength (λ). The first constraint ⟨1⟩ placed upon the system is that the endmember fractions 

must sum to 1.0 (100%) per pixel for each model run. Because the equation is a relatively simple 

constrained, least-squares fit, negative endmember fractions are mathematically valid and occur in 

the rare cases where the spectrum of the unknown sample has a lower emissivity in some/all of the 

spectral range versus that of the endmember spectra. In these cases, the second constraint ⟨2⟩ is 

tested and negative endmembers removed from the modeling. 

Therefore, assuming that the pure mineral spectra (i.e., the endmembers) are known, TIR 

spectra can be linearly deconvolved using the least-squares approach (equation 2) to ascertain the 

mineralogic percentages. For image-based analyses, this results in one image per endmember 

together with several checks on the accuracy of that model fit. A residual error image is produced 

for each TIR band, which is simply the measured – the modeled emissivity in that spectral band. 

Areas of high residual error indicate a poor model fit in that spectral band with the chosen 

endmembers. This difference is a critical measure of the retrieval algorithm's fit, and easily 

visualized where displayed versus wavelength, or as an image in the case of remotely gathered 

data (Gillespie et al., 1990). High residual errors at specific wavelengths indicate the possibility of 

an unmodeled absorption feature not present in either the endmember or mixture spectrum. An 

examination of residuals may also reveal nonlinear behavior at certain wavelengths as well as 

highlight areas of poor atmospheric correction and/or low instrument signal to noise (SNR). 

A singular goodness-of-fit error image is also produced for each image/model run. The 

root-mean-squared (RMS) error image becomes invaluable in order to assess the overall quality of 
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a given algorithm iteration. For an instrument with (m) wavelength bands, the RMS is related to 

the per-band residual error (δ(λ)) using equation 3. 

𝑅𝑅𝑅𝑅𝑅𝑅 = ��∑ 𝛿𝛿(𝜆𝜆)𝑗𝑗
2𝑚𝑚

𝑗𝑗=1 �

𝑚𝑚
   (3) 

In the most common approach to spectral deconvolution, the number of endmembers modeled 

must be ≤ the number of spectral bands. Thus, for hyperspectral data, the number of possible 

endmembers can be quite high (to the point of being geologically implausible). However, for 

multispectral data, the limited number of spectral bands commonly places a tight constraint on the 

number of endmembers. This constraint may be acceptable if one is modeling the highest 

percentage two or three mineral endmembers using five or six band TIR data. If more than five or 

six endmember are present (or if one wants to test for the presence of many unknown minerals), a 

different approach is required such as the Multiple Endmember SMA (MESMA), which uses a 

combinatorial approach to testing all possible endmember combinations for the one producing the 

best fit (e.g., the lowest RMS error). 

3.2.2 Multiple Endmember SMA (MESMA) 

Linear SMA assumes that a mixed spectrum can be modeled as a linear combination of 

pure spectra, known as endmembers (Adams et al., 1986; Ramsey and Christensen, 1998). Under 

ideal conditions, the most accurate fractional estimates can be achieved using the minimum 

number of endmembers required to account for spectral variability within a mixed pixel (Sabol et 

al. 1992). Fractional errors occur either where too few endmembers are used, resulting in spectral 

information not modeled by the existing endmembers; or too many, resulting in incorrect 

endmember assignment that is used in the model, but not actually present (Roberts et al., 1998). 

The iterative Multiple Endmember Spectral Mixture Analysis (MESMA) technique can account 
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for within-class variability and is applied by running numerous models for a pixel and selecting 

one model based on its ability to meet selection criteria and produce the best fit, typically a 

minimum RMS (Painter et al. 1998). Selection criteria include fractional constraints (minimum 

and maximum fraction constrains), maximum allowable blackbody fraction, RMSE constraints 

and a residual constraint set to remove any model that exceeds a threshold over a range of 

wavelengths. Using this approach, pixel-scale limits in spectral dimensionality are recognized 

despite the considerable spectral variability within a scene. The model constraints are variably 

selectable, whereby MESMA can also be run in an unconstrained mode. Previous studies have 

found that the flexible MESMA approach resulted in the majority of pixels in an image being 

modeled with only two-endmember models (Roberts et al. 1998). For example, Powell and Roberts 

(2008) found that natural landscapes in Brazil required only two-endmember models, disturbed 

regions required three- and urban areas required four-endmember models.  

 

3.3 Wight Percent Silica (WPS) 
To be updated (Hook et al., 2005) 
 

3.5 Sensitivity Analysis 
To be updated 
 

 
4 Surface Mineralogy (SM) Algorithm 

 
The surface mineralogy (SM) algorithm for SBG must rapidly and accurately detect mineral 

abundances across Earth’s low vegetation surfaces (i.e., dunes, volcano, wildland fire scars, arid 

regions) with a low RMSE. Two main groups of algorithms were tested: SMA and MESMA, based 

on the widespread usage in the community and previous development and refinement activities. 
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The testing approach and the results are first described below with the final SM algorithm 

implementation presented in §4.4.2 and §4.5. 

 

4.1 Test Data Creation 
Five simulated OTTER datasets were created from airborne MASTER data using the pre-

existing MASTER wavelengths or weighted band averages for the OTTER band center positions 

that did not align with those of MASTER (Figure 5). The data were also spatially resampled to the 

planned resolution of OTTER and the atmospheric correction was modified for the performance 

characteristics (e.g., FPA response) and viewing geometry of OTTER. These simulated data were 

chosen to test many of the SBG geology higher level data products and therefore include data with 

known thermal anomalies others with no thermally elevated areas. The latter included 

compositionally varied targets (e.g., Kelso Dunes, Yosemite National Park) for testing the Surface 

Mineralogy (SM) product algorithms. However, here they served as null test locations for the ETF 

algorithm. Both day and night time datasets were utilized.  

 

Figure 5: False color image data (11.35, 9.07, 8.32 µm: RGB) of the simulated OTTER data used in the ETF 
algorithm testing process. 
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4.2 Algorithm Testing Criteria 

Two main previously developed algorithms were considered for testing that utilize an SMA 

and MESMA approach (Ramsey and Christensen 1998; Roberts et al. 1998). These were chosen 

based on the availability, accessibility, and high usage across the Earth science community.  

 

4.3 Methodology 

4.3.1 Spectral Library Endmember Selection 

Nine spectral endmembers were chosen for the SM product (Table 4). These were selected 

because they are major rock-forming minerals and are generally considered the most abundant on 

the Earth’s surface (REF). The focus of the TIR Surface Mineralogy product is on silicate minerals 

(with two exceptions), all of which have dominate spectral features in the TIR region. Alteration 

minerals such as oxides and clays are better detected in the VSWIR region and the focus of that 

SBG sensor.  

Table 4: Endmember minerals selected for the SM product spectral library 

Mineral Name Mineral Class Mineral Group Chemical Formula ASU Spectral Library number 
Andesine silicate feldspar (Ca, Na)(Al, Si)4O8 434 
Augite silicate pyroxene (Ca,Na)(Mg,Fe,Al,Ti)(Si,Al)2O6 480 
Calcite carbonate  CaCO3 527 
Forsterite silicate olivine Mg2SiO4 441 
Gypsum sulfate   CaSO4 · 2H2O 758 
Hornblende silicate amphibole Ca2(Mg,Fe,Al)5(Al,Si)8O22(OH)2 469 
Microcline silicate feldspar KAlSi3O8 490 
Muscovite silicate mica KAl2(AlSi3O10)(F,OH)2 449 
Quartz silicate  SiO4 1969 

 
The spectral are plotted in Figure 6 at full spectral resolution (2 cm-1) and down sampled 

to the proposed six band SBG resolution. Importantly, with the addition of the sixth TIR band at 

10.3 μm, the spectral diversity of these nine minerals produces distinct spectral shapes in the six-
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point spectral ensuring little confusion in mapping these minerals in the SBG data. The addition 

of the tenth blackbody (ε = 1.0 at all wavelengths) endmember provides a way to account for the 

discrepancy in spectral depth between the laboratory-measured endmember minerals and that of 

the image-based data. A blackbody endmember image will be produced, however if normalized 

out of the total percentage per pixel, the remaining endmember percentages will sum to 100%. 
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Figure 6: TIR (8.0 – 13.0 µm) spectral emissivity endmembers chosen for testing and eventual 
implementation of the SM Algorithm. Top: laboratory spectral resolution. Bottom: spectra resampled to 
the OTTER TIR spectral resolution. Data from: ASU Spectral Library (Christensen et al., 2000). 

 

4.4 SM Algorithm Testing 

4.4.1 Subset for Expanded Evaluation 

4.4.1.1 Kelso Dunes 
The Kelso Dunes are located in the eastern Mojave Desert,California,~95 km west of the 

California-Arizona border. The rocks that compose the mountain ranges surrounding the dunes 

range from metamorphosed Proterozoic island-arc remnants, which form much of the southern 

Kelso Mountains, to Paleozoic metasedimentary rocks that compose the majority of the northern 

Granite and portions of the Providence Mountains, to Tertiary rhyolite in the Providence 

Mountains (Jennings, 1961; Bishop, 1963). Also present is the Teutonia batholith, the dominant 

intrusive rock in the eastern Mojave Desert. It was emplaced throughout later Mesozoic time and 

ranges compositionally from monzonite to granodiorite (Beckerman et al., 1982). In the vicinity 
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of the dunes, the batholith is primarily a quartz monzonite (McDonald and McFadden, 1994), 

weathering to 1 cm grus of alkali feldspar and plagioclase with lesser amounts of quartz. 

The Kelso dune field covers more than 100 km2 and is contained within a topographic basin 

bounded by the Kelso, Providence, Granite, and Bristol Mountains to the north, east, south, and 

west, respectively. Earlier studies estimated the dunes to be mature with 70-90% quartz (Sharp, 

1966; Paisley et al., 1991); however, later studies using TIR data and detailed field sampling 

showed the dunes to have a much higher feldspar and lower quartz content indicating a less mature 

dune field with sand input from local sources (Ramsey et al., 1999). 

Daytime TIR airborne data were acquired over the Kelso Dunes region, southern California 

on September 20, 1999 at 18:47 UTC (10:47 PDT). The algorithms were applied to the emissivity 

data using five and ten endmembers for the SMA and MESMA approaches, respectively. SMA 

and MESMA analysis required 6.7 x10-5 and 7.4 x10-7 seconds per pixel, respectively (Figure 7).  

 

    

(a) (b) (c) (d) 
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Figure 7: “Fast” MESMA linear deconvolution mineral mapping results using the 10 endmember 
spectral library (Fig. 6) and the simulated SBG test data for Kelso Dunes, CA. (a) Plagioclase feldspar 
(andesine), (b) olivine (augite), (c) calcite, (d) pyroxene (forsterite), (e) gypsum, (f) amphibole 
(hornblende), (g) potassium feldspar (microcline), (h) mica (muscovite), (i) quartz, (j) blackbody, 
(k) RMS error, (l) color composite of microcline, quartz, and andesine endmembers in R, G, B, 
respectively.  

 

 

4.4.2 Final Algorithm Selection 

 

(e) (f) (g) (h) 

(i) (j) (k) (l) 
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4.5 SBG SM Algorithm Testing 

 T.B.D. once final algorithm choice is determined. 
 
4.5.1 Data Inputs 

 T.B.D. once final algorithm choice is determined. 
 

4.5.2 Algorithm Limitations 

 T.B.D. once final algorithm choice is determined. 
 

4.5.3 SM Workflow 

 T.B.D. once final algorithm choice is determined. 
 

4.5.4 Implementation Strategy for SBG Mission 

 T.B.D. once final algorithm choice is determined. 
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Figure 8: (a) ASTER GEDv4 monthly emissivity showing increasing emissivity due to vegetation green up 
from summer rainfall over the Sahel, Senegal, from March to September 2004 and (b) corresponding 
emissivity uncertainty estimate (%). (c) ASTER GEDv4 monthly emissivity showing decreasing emissivity 
with snowmelt from January to June 2004 over the Rocky Mountains in Colorado and (d) corresponding 
emissivity uncertainty estimate (%). (Hulley et al., 2015). 
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4.6 Error Propagation 

T.B.D. once final algorithm choice is determined. 
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5 Uncertainty Analysis 

NASA has identified a major need to develop long-term, consistent products valid across 

multiple missions, with well-defined uncertainty statistics addressing specific Earth-science 

questions. These products are termed Earth System Data Records (ESDRs). 

  
Completed once final algorithm choice is determined. 

 
 

 

6 Quality Control and Diagnostics 

 T.B.D. once final algorithm choice is determined. 
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7 Scientific Data Set (SDS) Variables 
 
 

Table 5. The Scientific Data Sets (SDSs) for the L3 SBG Surface Mineralogy (SM) product 

 
SDS Long Name Data type Units Valid Range Fill Value Scale 

Factor 
Offset 

Group SDS 
Amph% Amphibole Percentage Int8 % 1-255 0   
Carb% Carbonate Percentage Int8 % 1-255 0   
Mica% Mica Percentage Int8 % 1-255 0   
Oliv% Olivine Percentage Int8 % 1-255 0   
Plag% Plagioclase Feldspar 

Percentage 
Int8 % 1-255 0   

Kspr% Potassium Feldspar Percentage Int8 % 1-255 0   
Pyrx% Pyroxene Percentage Int8 % 1-255 0   
Qrtz% Quartz Percentage Int8 % 1-255 0   
Gyps% Gypsum Percentage Int8 % 1-255 0   
Bb% Blackbody Percentage Int8 % 1-255 0   
TIR1-res TIR Band 1 Residual Error Float16 n/a 0-65535 0   
TIR2-res TIR Band 2 Residual Error Float16 n/a 0-65535 0   
TIR3-res TIR Band 3 Residual Error Float16 n/a 0-65535 0   
TIR4-res TIR Band 4 Residual Error Float16 n/a 0-65535 0   
TIR5-res TIR Band 5 Residual Error Float16 n/a 0-65535 0   
TIR6-res TIR Band 6 Residual Error Float16 n/a 0-65535 0   
RMS-err RMS Error Float16 n/a 0-65535 0   
WPS Wt% silica Float16 % 0-65535 0   
QC Data Quality Int8 n/a 1-255 0   
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8 Calibration/Validation Plans 
 

8.1 Pre-Launch Algorithm Calibration and Testing 
 T.B.D. once final algorithm choice is determined. 
 
8.1.1 Expanded Test Dataset 
 T.B.D. once final algorithm choice is determined. 
 

8.2 Post-Launch Validation Methodology 
 T.B.D. once final algorithm choice is determined. 
 
8.2.1 Target Sites 
 T.B.D. once final algorithm choice is determined. 
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