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1 Introduction 

1.1 Purpose 

Evapotranspiration (ET) is one of the main science outputs from the Surface Biology and 

Geology (SBG). ET is a Level-3 (L-3) product constructed from a combination of the SBG 

Level-2 (L-2) Land Surface Temperature (LST) product and ancillary data sources. The rate of 

ET is controlled by many environmental and biological controls including: incoming radiation, 

the atmospheric water vapor deficit, soil water availability, and vegetation physiology and 

phenology (Brutsaert, 1982; Monteith, 1965; Penman, 1948). Therefore, to accurately model ET, 

it remains important to consider these variables. Scientists have been able to form models that 

ingest satellite observations that capture environmental and biological controls on ET across the 

globe.  Because LST holds the unique ability to capture when and where plants experience stress, 

as observed by elevated temperatures, LST can inform which areas have a reduced capacity to 

evaporate or transpire water to the atmosphere (Allen et al., 2007). In this Algorithm Theoretical 

Basis Document (ATBD), we describe the Jet Propulsion Laboratory ET (JET) Ensemble 

approach taken to resolve ET globally is the heritage from the ECOSTRESS mission that we 

consider as a set of candidate algorithms for SBG.. 

 

1.2 Scope and Objectives 

In this ATBD, we provide: 

1. Description of the ET parameter characteristics and requirements; 

2. Description of the general form of the ET algorithms in the JET ensemble;  

3. Required algorithm-specific adaptations specific to the SBG mission; 

4. Required Ancillary data products with potential sources and back-up sources;  

5. Plan for the calibration and validation (Cal/Val) of the ET retrieval. 

 

2 Parameter Description and Requirements 

Attributes of the ET data produced by the SBG mission include: 

• Spatial resolution of 60 m x 60 m; 

• Diurnally varying temporal resolution to match the overpass characteristics of the 

International Space Station (ISS); 

• Latency as required by the SBG Science Data System (SDS) processing system; 
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• Ancillary Variables 

Ancillary variable Equation Source  

Albedo (𝛼) STARS Harmonized Landsat Sentinel 

(HLS) 2.0 product;  

Suomi NPP Visible Infrared 

Imaging Radiometer Suite 

(VIIRS) VNP09GA product 

Normalized difference 

vegetation index (NDVI) 
STARS SBG ASI VNIR camera; 

Harmonized Landsat Sentinel 

(HLS) 2.0 product;  

Suomi NPP Visible Infrared 

Imaging Radiometer Suite 

(VIIRS) VNP09GA product 
Near-surface air temperature 

(Ta)  

 

 

L3G MET GEOS-5 FP tavg1_2d_slv_Nx 

product 

Near surface dew point 

temperature (Td) 

Net radiation GEOS-5 FP tavg1_2d_slv_Nx 

product 

Relative humidity (RH) L3G MET GEOS-5 FP tavg1_2d_slv_Nx 

product 

Soil moisture (SM) L3G SM product GEOS-5 FP tavg1_2d_lnd_Nx 

product  

Table 1. Showing ancillary variables and their respective equations, and data sources. 

 

3.1 STARS NDVI and Albedo 

SBG produces coincident, gap-filled NDVI and albedo estimates at 60 m SBG standard 

resolution for each daytime SBG overpass through multi-instrument fusion of ancillary VSWIR 

data from high spatial resolution instruments (Sentinel 2A/B, Landsat, SBG) and moderate 

spatial but high temporal resolution instruments (Suomi NPP Visible Infrared Imaging 

Radiometer Suite (VIIRS)). Specific instrument data products considered for NDVI and albedo 

are described in Table 2. 

 

 NDVI Albedo (𝛼) 
High (<100 m) spatial Harmonized Landsat Sentinel 2.0 

(30 m, 3-5 day) 
SBG ASI VNIR (60m, coincident) 
 

Harmonized Landsat 
Sentinel 2.0 (30m, 3-5 day) 
SBG VSWIR (30m, 16 day) 
 

High (daily) temporal 
 

VIIRS VNP09GA (500 m) VIIRS VNP09GA (1km) 

Table 2. Data sources for STARS fusion of NDVI and albedo. 
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Prior to data fusion, a pixelwise, lagged 16-day implementation of the VNP43 algorithm (Schaaf, 

2017) is used for a near-real-time bi-directional reflectance function (BRDF) correction on the 

VNP09GA reflectance products to produce VIIRS nadir BRDF-adjusted red and near-infrared 

reflectance at 500 m resolution for NDVI,  and 1 km estimates of black-sky albedo (𝑎𝑏𝑙𝑎𝑐𝑘) and 

white-sky albedo (𝑎𝑤ℎ𝑖𝑡𝑒) for VIIRS M-bands 1, 2, 3, 4, 5, 7, 8, 10, and 11. Blue-sky albedo 

(𝑎𝑤ℎ𝑖𝑡𝑒) for each of these bands is calculated as in (Schaaf, 2017)  

 

𝑎𝑏𝑙𝑢𝑒 = 𝑆𝐾𝑌𝐿 ∙ 𝑎𝑤ℎ𝑖𝑡𝑒 + (1 − 𝑆𝐾𝑌𝐿)𝑎𝑏𝑙𝑎𝑐𝑘 

 

where SKYL is the fraction of diffuse skylight read from a look-up table according to solar 

zenith angle and aerosol optical depth (AOD) retrieved from GEOS-5 FP tavg3_2d_aer_Nx. The 

broadband blue-sky albedo is calculated by a weighted sum of the VIIRS M-band blue-sky 

albedo estimates using the near-to-broadband coefficients described in (Schaaf, 2017) described 

in Table 3. 

 

VIIRS M-Band NTB Coefficient 
1 0.2418 
2 -0.201 
3 0.2093 
4 0.1146 
5 0.1146 
7 0.1348 
8 0.2251 
10 0.1123 
11 0.0860 
Offset -0.0131 

Table 3. Near-to-Broadband (NTB) coefficients for VIIRS M-band albedo (Schaaf, 2017). 

 

A near-to-broadband albedo is estimated from the Harmonized Landsat Sentinel (HLS) products 

using the Sentinel-2a/b coefficients in Table 4 and Landsat 8 coefficients in Table 5. The 30 m 

albedo estimates from HLS are up-sampled to the 60m SBG standard resolution prior to data 

fusion.  

 

Band NTB Coefficient 
2 0.1324 
3 0.1269 
4 0.1051 
5 0.0971 
6 0.0890 
7 0.0818 
8 0.0722 
11 0.0167 
Offset 0.0002 

Table 4. Near-to-Broadband (NTB) coefficients for Sentinel-2a/b albedo (Vanino, 2018). 



SBG LEVEL-3 EVAPOTRANSPIRATION, L3(ET_PT-JPL) ATBD 

 8 

 

Landsat 8 Band NTB Coefficient 
2 0.356 
3 0.13 
4 0.373 
5 0.085 
6 0.072 
Offset -0.018 

Table 5. Near-to-Broadband coefficients for Landsat 8 albedo (Liang, 2001). 

 

The data fusion is performed using a variant of the Spatial Timeseries for Automated high-

Resolution multi-Sensor data fusion (STARS) methodology (Johnson et al., 2022). STARS is a 

statistical, state-space timeseries methodology that provides streaming data fusion and 

uncertainty quantification through efficient Kalman filtering. For SBG, the STARS method is 

implemented for NDVI and albedo, separately, as follows. Let 𝑥𝑖,𝑡 represent NDVI/albedo to be 

estimated in the 𝑖𝑡ℎ 60 m SBG resolution pixel on day 𝑡. Let 𝑌𝑖,𝑡
𝑓

 represent measurements from 

the high spatial resolution instruments at the 𝑖𝑡ℎ 60 m pixel. Note that 𝑌𝑖,𝑡
𝑐  is assumed to be 

missing if there is no high spatial resolution overpasses on day 𝑡. Then, let 𝑌𝑗,𝑡
𝑐  represent the 

coarse spatial resolution VIIRS measurement at the 𝑗𝑡ℎ cell in the VIIRS resolution grid (500 m 

for NDVI, 1 km for albedo) and let 𝐴𝑗 be the set of all 60m pixels overlapped by the VIIRS 

pixel. The statistical model for SBG STARS has the following form 

 

𝑌𝑗,𝑡
𝑐 =

1

|𝐴𝑗|
∑ 𝑥𝑖,𝑡

𝑖∈𝐴𝑗

+ 𝜖𝑗,𝑡
𝑐  

𝜖𝑗,𝑡
𝑐  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑐

2) (1a) 

𝑌𝑖,𝑡
𝑓

= 𝑥𝑖,𝑡 + 𝜖𝑖,𝑡
𝑓

 𝜖𝑗,𝑡
𝑓

 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑓
2) (1b) 

 

𝑥𝑖,𝑡 = 𝑥𝑖,𝑡−1 + 𝜔𝑖,𝑡  𝜔𝑖,𝑡 ~ 𝐺𝑃(0, 𝜏2, 𝒦(∙)) (2) 

 

where equations (1a,b) describe the instrument measurements as noisy, aggregate in the case of 

VIIRS, observations of the target high resolution image values, 𝑥𝑖,𝑡. Measurement errors are 

assumed to be mean-zero and normally distributed with standard deviations 𝜎𝑐, 𝜎𝑓 for coarse and 

fine instruments, respectively. Equation 2 describes day-to-day temporal dependence in 

NDVI/albedo through a first-order Markov chain where the magnitudes of pixel-level changes 

between days (𝜔𝑖,𝑡) follow a Gaussian process (GP) with covariance function 𝒦(∙), modelling 

spatial correlation of day-to-day changes between pixels. The standard deviation parameter, 𝜏, 

constrains the expected magnitude of change. To achieve scalability, STARS is implemented in a 

block, moving window where blocks are defined by the coarse resolution grid plus a spatial 

buffer region. 

 

For 𝑥𝑡 = (… , 𝑥𝑖,𝑡 , … ) the vector of the 𝑛 target image pixels within a block on day t, and 𝑦𝑡 the 

stacked vector of available coarse and fine measurements, the timeseries model above induces 

the full state space model 
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𝑦𝑡 =  𝐹𝑡𝑥𝑡 + 𝜖𝑡  𝜖𝑡 ~ 𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝑉) (3) 

𝑥𝑡 =  𝑥𝑡−1 + 𝜔𝑡 𝜔𝑡 ~ 𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝑊) (4) 

 

 

where 𝑉 is a diagonal matrix with elements 𝜎𝑓
2, 𝜎𝑐

2. The matrix, 𝐹𝑡, is the aggregation matrix 

analog to the linking of coarse and fine measurements to the target resolution grid in equation 

(1a,b). The estimation of the target 60m NDVI/albedo images on day 𝑡 is inferred through the 

posterior distribution of 𝑥𝑡 given all considered past and current measurements up to day 𝑡. This 

distribution is known to be Gaussian with mean, 𝑚𝑡, and covariance, 𝐶𝑡. The mean provides the 

estimated imagery, while the covariance provides quantified uncertainties characterizing 

uncertainty due to spatial and temporal downscaling. Estimates of 𝑚𝑡 and 𝐶𝑡 are obtained 

recursively through the well-known Kalman filtering equations (Kalman, 1960). Specifically, 

given estimates of 𝑚𝑡, 𝐶𝑡, and any new observations on day 𝑡 + 1 (𝑦𝑡+1), the updated estimates 

of 𝑚𝑡+1, and 𝐶𝑡+1 are calculated as 

 

𝑚𝑡+1 =  𝑚𝑡 +  𝐾𝑡+1(𝑦𝑡+1 − 𝐹𝑡+1𝑚𝑡) 

 

(5) 

𝐶𝑡+1 = (𝐼 − 𝐾𝑡+1𝐹𝑡+1)(𝐶𝑡 + 𝑊) (6) 

 

 

 

where 𝐾𝑡+1 = (𝐶𝑡 + 𝑊)𝐹𝑡+1
𝑇 (𝐹𝑡+1(𝐶𝑡 + 𝑊)𝐹𝑡+1

𝑇 + 𝑉)−1 is the Kalman gain matrix. If neither no 

new measurements are available on day 𝑡 + 1, the mean estimate is propagated forward (𝑚𝑡+1 =
 𝑚𝑡) but the covariance is increased (𝐶𝑡+1 = 𝐶𝑡 + 𝑊) quantifying increased uncertainty in fused 

estimates due to lack of available data. By leveraging a timeseries approach to data fusion, 

STARS provides automated spatial and temporal gapfilling, uncertainty quantification, and the 

capability to provide estimates of coincident albedo with any SBG overpass. These pixel-wise 

uncertainties of the NDVI and albedo estimates are distributed as data layers in the STARS 

product. 

 

Near-real-time STARS NDVI/albedo products corresponding to each daytime L2T_LSTE 

product are produced by loading the set of means and covariances produced for the day of the 

previous L2T_LSTE product, downloading any available measurements (VIIRS, HLS, etc.) 

between overpasses, and Kalman filtering forward the NDVI/albedo estimates to the current 

target day. The latency of this operation depends on the latency of the products in Table 1. The 

coincident STARS NDVI and albedo products are recorded in the L2T_STARS product. 

 

3.2 Downscaled Meteorology and Soil Moisture 

Near-surface air temperature (Ta) and relative humidity (RH) are sourced from the GEOS-5 FP 

tavg1_2d_slv_Nx product. Soil moisture (SM) is sourced from the GEOS-5 FP 

tavg1_2d_lnd_Nx product. 

 

The Ta, RH, and SM inputs of the ET models are retrieved at low latency from the GEOS-5 FP 

dataset at coarse resolution, approximately a third of a degree. To improve the spatial fidelity of 

evapotranspiration processing, these coarse meteorological estimates are spatially downscaled to 
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the fine spatial structure of the SBG surface temperature and STARS albedo. Future versions of 

this product will include a more robust method. 

 

The ST, NDVI, and albedo are spatially aggregated to the GEOS-5 FP spatial resolution. A 

linear regression is calculated from these three variables as independent variables to the GEOS-5 

FP variable as the dependent variable for each of the GEOS-5 FP variables. The coefficients 

from this regression are applied to the fine resolution SBG surface temperature and STARS 

albedo to produce a fine resolution estimate of air temperature, humidity, or soil moisture. This 

fine scale estimate is bias corrected by spatially aggregating to the GEOS-5 FP scale, measuring 

the bias against the GEOS-5 FP estimate, and spatially interpolating this coarse scale bias to the 

60 m SBG grid, and subtracting this interpolated bias. Cloud-obstructed areas of are filled in 

with bi-cubically resampled GEOS-5 FP. The meteorology variables Ta and RH are recorded in 

the L3T MET and mosaicked into the L3G MET. The SM data is recorded in the L3T SM 

product and mosaicked into the L3G SM product.  

 

3.3 Net Radiation 

The generation of net radiation (Rn) involves the integrated retrieval of individual radiation 

balance components: downwelling shortwave radiation (RSD), upwelling shortwave radiation 

(RSU), downwelling longwave radiation (RLD), and upwelling longwave radiation (RLU) [Verma 

et. al, 2016]: 

 

𝑅𝑁 = (𝑅𝑆𝐷 − 𝑅𝑆𝑈) + (𝑅𝐿𝐷 − 𝑅𝐿𝑈) (7) 

 

where a is the surface albedo. 

NETRAD Equations Data Variable & Sources 

RSD FLiES Cloud Optical Thickness and 

Aerosol Optical Thickness 

(GEOS-5 FP) 

RSU 𝑅𝑆𝑈 = 𝛼𝑅𝑆𝐷 Land Surface Albedo 

(STARS) 

RLD 𝑅𝐿𝐷 = 𝜎𝜀𝐴𝑇𝑎
4 Near Surface Air 

Temperature and Vapor 

Pressure (GEOS-5 FP) 

RLU 𝑅𝐿𝑈 = 𝜎𝜀𝑆𝑇𝑆
4 Land Surface Temperature 

and Emissivity (ECO2LSTE) 

Table 2. Showing radiation balance components and their respective equations, variables, 

and data sources 

 

RSD is calculated from an atmospheric radiative transfer model, the Forest Light Environmental 

Simulator (FLiES) [Iwabuchi, 2006; Kobayashi and Iwabuchi, 2008; Ryu et al., 2011; Ryu et al., 

2012]. To speed processing, a neural network machine learning algorithm was trained on to 

generate RSD from solar zenith angle, aerosol optical thickness, cloud optical thickness, land 

surface albedo, atmospheric profile height, aerosol type, and cloud height.  RSU is calculated from 

RSD and land surface albedo () as: 
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𝑅𝑆𝑈 = 𝛼𝑅𝑆𝐷 (8) 

 

RLD is calculated from Stefan-Boltzmann’s Law: 

 

𝑅𝐿𝐷 = 𝜎𝜀𝐴𝑇𝑎
4 (9) 

  

𝜀𝐴 = 1 − (1 + .467
𝐸𝑎

𝑇𝑎
) \𝑎𝑠𝑡𝑒

−√1.2+3
4.65⋅𝐸𝑎

𝑇𝑎  

 

(10) 

𝐸𝐴 = 2.171 ∗ 10
(10∗𝑒

−
4157

𝑇𝑑
−33.91

)
 

 

(11) 

  

 

where σ is the Stefan-Boltzmann constant (5.67x10-8 W m-2 K-4), εA is the atmospheric emissivity 

calculated from total atmospheric precipitable water (ζ) [Prata, 1996], Ta is near surface air 

temperature, Ea is the vapor pressure, and Td is the near surface dew point temperature. Ta and Td 

(C) are available from GEOS-5 [Verma et. al, 2016]: 

 

RLU is calculated from Stefan-Boltzmann’s Law [Verma et. al, 2016]: 

 

𝑅𝐿𝑈 = 𝜎𝜀𝑆𝑇𝑆
4 (12) 

 

where εS is the broadband surface emissivity and TS is surface temperature available from the 

SBG LST_LSTE product.  

 

We emphasize these data products provide data at unprecedented scales. Therefore, we solicit 

feedback on the quality and utility of these variables in their ability to advance science and 

scientific applications. A preliminary evaluation of the ancillary data accuracy is presented in 

Section 5. 

 

4 Evapotranspiration Retrieval: Jet Propulsion Laboratory 

EvapoTranspiration (JET) Ensemble 
 

The JPL EvapoTranspiration (JET) data ensemble provides a robust estimation of ET from 

multiple ET models. The JET ensemble incorporates ET data from four algorithms: Priestley 

Taylor-Jet Propulsion Laboratory model with soil moisture (PT-JPLSM), the Penman Monteith 

MODIS Global Evapotranspiration Model (MOD16), Soil Temperature Initiated Closure (STIC) 

model, and the Breathing Earth System Simulator (BESS) model. We present descriptions of 

these models here, inherited from the ECOSTRESS mission, as candidates for SBG L3 

evapotranspiration processing. 
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4.1 PT-JPLSM: General Form  

The PT-JPLSM model relies on the Priestley-Taylor [1972] equation to resolve potential ET 

(PET). This formulation is removed from the need to parameterize stomatal and aerodynamic 

resistances and instead multiples the 𝛼 coefficient (1.26) to the rate of equilibrium ET:  

 

𝑃𝑇  =  𝛼
Δ

Δ + 𝛾
𝑅𝑁 − 𝐺 

(13) 

 

where ∆ is the slope of the saturation-to-vapor pressure curve (dependent on near surface air 

temperature, Ta, and atmospheric vapor pressure, ea), 𝛾 is the psychrometric constant, and RN is 

net radiation (W m-2) and G is the ground heat flux (W m-2). PET is given in units of RN, or W 

m-2, and is therefore considered as an energy variable, i.e., LE. To convert LE to ET, one can 

divide LE by the latent heat of vaporization (MJ kg-1). 

 

To reduce PET to actual ET (AET), Fisher et al. [2008] applied ecophysiological constraint 

functions (f-functions, unitless multipliers, 0-1) based on atmospheric moisture (vapor pressure 

deficit, VPD; and, RH) and vegetation indices (normalized difference and soil adjusted 

vegetation indices, NDVI and SAVI, respectively). While this model has been demonstrated to 

perform well at large scales in space and time, certain model assumptions of land-atmosphere 

equilibrium fall apart at finer spatial and temporal frequencies. As a result, the PT-JPL 

formulation from Fisher et al. [2008] has been shown to overestimate ET in arid regions. To 

overcome these limitations Purdy et al. [2018] modified the algorithm to incorporate explicit 

constraint from soil water availability. The driving equations in the PT-JPLSM algorithm are:  

  

𝐴𝐸𝑇 =  𝐸𝑇𝑠 + 𝐸𝑇𝑐 + 𝐸𝑇𝑖 

 

(14) 

𝐸𝑇𝑠 = (𝑓𝑤𝑒𝑡 + 𝑓𝑟𝑒𝑤(1 − 𝑓𝑤𝑒𝑡))𝛼
Δ

Δ + 𝛾
(𝑅𝑛𝑠 − 𝐺) 

 

(15) 

 

𝐸𝑇𝐶 = (1 − 𝑓𝑤𝑒𝑡)𝑓𝑡𝑟𝑚𝑓𝑔𝑓𝑡𝛼
Δ

Δ + 𝛾
𝑅𝑛𝑐 

(16) 

 

𝐸𝑇𝑖 = 𝑓𝑤𝑒𝑡𝛼
Δ

Δ + 𝛾
𝑅𝑛𝑐  

(17) 

 

where ETs, ETc, and ETi are evaporation from the soil, canopy and intercepted water, 

respectively, each calculated explicitly and summing to total AET. fwet is relative surface wetness 

(RH4) [Stone et al., 1977] representing the fraction of soil and canopy that delivers water to the 

atmosphere potential rate. frew is the relative extractable water defined as the difference between 

observed soil moisture (𝜃𝑜𝑏𝑠) and soil moisture at the plant wilting point (𝜃𝑤𝑝) divided by the 

difference of soil moisture at field capacity (𝜃𝑓𝑐) and soil moisture at the plant wilting point 

(
𝜃𝑜𝑏𝑠−𝜃𝑤𝑝

𝜃𝑓𝑐−𝜃𝑤𝑝
). Canopy constraints include the fraction of green canopy (fg= fAPAR/fIPAR) [Zhang et al., 
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2005], plant temperature constraints (ft= exp(-((Tmax-Topt)/Topt)2)) [Potter et al., 1993; June et al., 

2004], and plant and soil moisture controls (ftrm) [Purdy et al., 2018]. fAPAR is absorbed 

photosynthetically active radiation (PAR), fIPAR is intercepted PAR, Tmax is maximum air 

temperature, Topt is Tmax at max(𝑅𝑛𝑇𝑚𝑎𝑥
𝑆𝐴𝑉𝐼

𝑉𝑃𝐷
), G is the soil heat flux, and Rnc, Rns are the net 

radiation (‘c’ for canopy and‘s’ for soil). ftrm combines both fm the plant moisture control and soil 

moisture control on transpiration (ftrew) by weighting each constraint by the relative humidity as: 

 

𝑓𝑡𝑟𝑚 = (𝑅𝐻4(1−𝑉𝑊𝐶)(1−𝑅𝐻))𝑓𝑚 + (1 − 𝑅𝐻4(1−𝑉𝑊𝐶)(1−𝑅𝐻))𝑓𝑡𝑟𝑒𝑤       (18) 

 

During periods of high humidity, plant moisture is a stronger control than soil water control. 

During periods of low humidity, soil water control is greater (Figure 1).  

 
Figure 1) Plant moisture (green) and soil water control (blue) weight by relative humidity 

(x-axis) and VWC (legend values: 0.2-0.6). During periods of high relative humidity periods 

higher weights on plant moisture indicate more control from this scalar. During low 

humidity more weight is placed on soil water control. 

 

The individual plant moisture and soil water constraints on transpiration are derived as: 

 

𝑓𝑚 =
𝑓𝐴𝑃𝐴𝑅

𝑓𝐴𝑃𝐴𝑅𝑚𝑎𝑥
 

(19) 

 

 

𝑓𝑡𝑟𝑒𝑤 = 1 − (
𝜃𝑐𝑟 − 𝜃𝑜𝑏𝑠

𝜃𝑐𝑟 − 𝜃𝑤𝑝𝑐ℎ
)

𝐶𝐻𝑠𝑐𝑎𝑙𝑎𝑟

 

(20) 

 

where CHscalar is a canopy height scalar that impacts the sensitivity of vegetation to soil water 

availability equal to √𝐶𝐻 and capped between 1 and 5, 𝜃𝑐𝑟 is the critical soil moisture at which 

soil water availability begins to constrain ET and computed as: 

 

𝜃𝑐𝑟 = (1 − (
1

1 + 𝑃𝐸𝑇
− 0.1

1

1 + 𝐶𝐻
)) (𝜃𝑓𝑐 −

𝜃𝑊𝑃

𝐶𝐻𝑠𝑐𝑎𝑙𝑎𝑟
) +

𝜃𝑊𝑃

𝐶𝐻𝑠𝑐𝑎𝑙𝑎𝑟
 

(21) 
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The adjustment of 𝜃𝑓𝑐  to 𝜃𝑐𝑟 is removed from the dependence on land classification datasets and 

facilitates continuously mapping when soil water availability begins to limit transpiration within 

ftrew (Figure 2). 

 

 
Figure 2) Supplemental figure from Purdy et al., 2018. ftrew on canopy height and PET (see 

legend). During high PET conditions soil water control begins sooner than during low PET 

conditions. Canopy height impacts when soil water control begins with taller canopies 

(greens) being less sensitive to surface soil water control than shorter canopies (blues).  

 
1 Spatial resolution improvements  

To maintain continuity with other SBG data products, ET from PT-JPLSM is produced at 60 m. 

This required generating ancillary variables such as NDVI, albedo (𝛼), air temperature (Ta), 

relative humidity (RH), soil moisture (SM), canopy height, and soil properties at the same 

spatial resolution. Section 3 details how NDVI, albedo, air temperature, relative humidity, soil 

moisture, and net radiation were resampled or downscaled to fill this need. Soil properties and 

canopy height data were sourced from X and Y. We advise caution to users interested in highly 

heterogeneous land surfaces and meteorological conditions at length scales less than 1 km.  

4.2 STIC: General Form 

 

The Surface Temperature Initiated Closure (STIC) (latest version 1.3) is a one-dimensional SEB 

model treating soil-vegetation as a single unit [Mallick et al., 2015; 2018; 2022]. STIC directly 

integrates LST into the Penman-Monteith Shuttleworth-Wallace system of ET equations 

[Penman, 1965; Shuttleworth and Wallace, 1985] to solve the aerodynamic temperature, which 

is the most critical temperature for ET modeling. STIC assumes a first-order dependence of 

aerodynamic conductance (𝑔𝑎) and canopy conductance (𝑔𝑐𝑠) on LST (through soil moisture 

availability and aerodynamic temperature (𝑇0)). Surface moisture availability (also called surface 

wetness) is first estimated as a function of LST, and then constrains 𝑔𝑎  and 𝑔𝑐𝑠  conductances 

through the surface wetness in an analytical framework. In addition to LST, the inputs to 
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STIC1.3 include radiation (net radiation), emissivity, albedo, fractional vegetation cover (FVC) 

(derived from NDVI), and meteorological inputs (air temperature, relative humidity, and 

incoming solar radiation).  

 

The general approach to STIC is (and see flow diagram in Figure 1): 

 

(1) STIC solves the state equations to find analytical solution of 𝑇0, and the conductances 

(𝑔𝑎  and 𝑔𝑐𝑠). 

(2) There are more unknowns in the state equations (e.g., aerodynamic vapor pressure 

components), these unknowns are initialized as a function of LST. 

(3) The additional unknowns are estimated iteratively by combining Penman-Monteith 

and Shuttleworth-Wallace equations 

 

The state equations solved in Step 1 are as follows:  

 

𝐹𝐸 =  
2𝛼𝑠

2𝑠 + 2𝛾 +  𝛾(1 + 𝐼𝑆𝑀)
𝑔𝑎
𝑔𝑐𝑠

 

  (22) 

𝑇0 = 𝑇𝑎 +  
(𝑒0 − 𝑒𝑎)

𝛾
 
(1 −  𝐹𝐸)

𝐹𝐸
 

  (23) 

𝑔𝑎 =  
𝑅𝑁 − 𝐺

𝜌𝑐𝑝 [(𝑇0 −  𝑇𝑎) + 
(𝑒0 − 𝑒𝑎)

𝛾

 

  (24) 

𝑔𝑐𝑠 =  𝑔𝑎

(𝑒0 − 𝑒𝑎)

(𝑒0
∗ − 𝑒0)

 

  (25) 

 

Where 𝐹𝐸 is the evaporative fraction (defined as the fractional contribution of ET from total 

available energy), 𝛼 is the Priestley-Taylor coefficient [Priestley & Taylor, 1972], 𝑠 is the slope 

of the saturation vapor pressure at air temperature (𝑇𝑎) (hPa/°C), 𝛾 is the psychrometric constant 

(hPa/°C), 𝑒0
∗ and 𝑒0 are the saturation vapor pressure and ambient vapor pressure at the canopy-

air stream, also called source-sink height (hPa), RN and G are net radiation and ground heat flux 

(W/m2), 𝑒𝑎 is the atmospheric vapor pressure (hPa) at the level of 𝑇𝑎 measurement, 𝜌 is the air 

density (kg/m3), and 𝑐𝑝 is the specific heat of air at constant pressure (j/kg/K).   

𝐼𝑆𝑀 describes the relative wetness or the intensity of water stress on a surface. This variable 

controls the transition from potential to actual evaporation, with 𝐼𝑆𝑀 tending to 1 on a unstressed 

wet surface, and 0 on a stressed dry surface. Since LST is extremely sensitive to surface water 

stress variations, it is used directly to estimate 𝐼𝑆𝑀. For further details, refer to Mallick et al. 

[2018, 2022]. 
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In Step 1, initial estimates of an initial estimate of 𝑒0
∗, 𝑒0, 𝐼𝑆𝑀, and surface dew point temperature 

(𝑇𝑠𝑑), are obtained. The initial 𝐼𝑆𝑀 and RN are used for an initial estimate of G. In Step 2, initial 

estimates of the conductances, 𝑇0, 𝐹𝐸 and sensible heat (H) and latent heat flux (LE) are 

obtained.  In Step 3, the process is iterated by updating 𝑒0
∗, 𝑒0, 𝐼𝑆𝑀, and 𝛼, and used to recalculate 

G, 𝑔𝑎 , 𝑔𝑐𝑠, 𝑇0, 𝐹𝐸, H, and LE until convergence of LE is obtained (10 – 15 iterations).   

The major differences of version 1.3 [Mallick et al., 2022] from the previous version concern the 

calculation of G, which is calculated according to Santanello and Friedl [2003] with the 

following function:  

 

𝐺

𝑅𝑁
 =  𝑐𝑔 [

2𝜋(𝑡𝑔0  +  10800)

𝑡𝑔
] 

  (26) 

 

Where cg is the maximum proportion of G/RN; tg0 is time in seconds relative to solar noon, tg is 

the factor that minimizes the deviation between G/RN and governs the phase difference between 

G and RN. cg and tg are linked to surface wetness ISM with: 

 

𝑐𝑔 =  (1 − 𝐼𝑆𝑀)𝑐𝑔𝑚𝑎𝑥 +  𝐼𝑆𝑀𝑐𝑔𝑚𝑖𝑛 

(27) 

 

 

𝑡𝑔 =  (1 − 𝐼𝑆𝑀)𝑡𝑔𝑚𝑎𝑥 +  𝐼𝑆𝑀𝑡𝑔𝑚𝑖𝑛 

(28) 

 

 

Using the values of cgmax (0.35), cgmin (0.05), tgmax (100000 s), and tgmin(74000 s). With the initial 

estimate of ISM, initial G is estimated, and then updated in the iterative process. Further details 

are available in the supporting information of [Mallick et al. 2022].  

 

For its implementation in SBG, we modified the STIC version 1.3 equation in the following 

ways: 

 

- We use a different method to calculate dew point temperature (𝑇𝑑) with relative humidity 

(𝑅𝐻) and air temperature (𝑇𝑎): 

 

 𝑇𝑑= 𝑇𝑎- ((100 - 𝑅𝐻 * 100) / 5) 

 

- The inputs RN , albedo, emissivity, NDVI, relative humidity, air temperature and incoming 

solar radiation are the same as used for other models in the JET ensemble. This is done in 

order to have more consistency in the input data.  

 

4.3 MOD16: General Form 

The MOD16 algorithm is rooted in the Penman Monteith equation with environmental 

constraints from vegetation cover, temperature, and atmospheric moisture deficits (Mu et al., 
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2011). Similar to the PT-JPLSM model, the MOD16 algorithm resolves evaporative fluxes from 

the soil, canopy, and intercepted water separately. 

 

𝐴𝐸𝑇 =  𝐸𝑇𝑠 + 𝐸𝑇𝑐 + 𝐸𝑇𝑖 

(29) 

 

𝐸𝑇𝑆 = (𝑓𝑤𝑒𝑡 + (1 − 𝑓𝑤𝑒𝑡)𝑅𝐻
𝑒𝑠𝑎𝑡−𝑒

𝛽 )

𝑠𝐴𝐶 +
𝜌𝐶𝑝(𝑒𝑠𝑎𝑡 − 𝑒)

𝑟𝑎𝑠

Δ + 𝛾 (1 +
𝑟𝑆𝑠

𝑟𝑎𝑠

)
 

 

(30) 

 

𝐸𝑇𝑆 = (1 − 𝑓𝑤𝑒𝑡)𝑓𝑐

𝑠𝐴𝐶 +
𝜌𝐶𝑝(𝑒𝑠𝑎𝑡 − 𝑒)

𝑟𝑎𝑠

Δ + 𝛾 (1 +
𝑟𝑆𝑠

𝑟𝑎𝑠

)
 

 

(31) 

 

𝐸𝑇𝑆 = 𝑓𝑤𝑒𝑡𝑓𝑐

𝑠𝐴𝐶 +
𝜌𝐶𝑝(𝑒𝑠𝑎𝑡 − 𝑒)

𝑟𝑎𝑠

Δ + 𝛾 (1 +
𝑟𝑆𝑠

𝑟𝑎𝑠

)
 

 

(32) 

 

 

Where fwet is fraction of wet surface, RH is the relative humidity, s is the slope of saturated water 

vapor pressure to temperature (d(esat)/dT); A is the available energy with subscripts to distinguish 

differences between the soil and canopy; 𝜌 is the air density; Cp is the specific heat capacity of 

air; 𝛾 is the psychromatic constant; e is the actual water vapor pressure; ra is the aerodynamic 

resistance; and rs is the surface resistance. Vegetation-dependent environmental constraints on 

stomatal conductance are incorporated through the surface resistance in the formulation above.  

 

4.4 BESS: General Form 

BESS is a coupled biophysical modeling system that couples atmospheric and canopy radiative 

transfer processes with photosynthesis, stomatal conductance, and transpiration using (Ryu et al., 

2011). BESS applies an equilibrium evaporation representation to resolve soil evaporation and 

solves a quadratic representation of the Penman Monteith model to estimate transpiration [Jiang 

et. al, 2016]: 

𝐴𝐸𝑇 =  𝐸𝑇𝑠 + 𝐸𝑇𝑐  

 

(33) 

𝐸𝑇𝑠 =  
𝑠

(𝑠 + 𝛾)
(𝑅𝑛𝑠 − 𝐺)𝑅𝐻𝑉𝑃𝐷  

 

(34) 

𝑎𝐸𝑇𝑐
2 + 𝑏𝐸𝑇𝑐 + 𝑐 = 0  

 

(35) 
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𝑎 =  
𝑟𝑎

2

2[𝜌𝑎𝐶𝑝𝛾(𝑟𝑎 + 𝑟𝑐)]

𝑑2𝑒𝑠𝑎𝑡(𝑇𝑎)

𝑑𝑇𝑎
2

 

 

(36) 

𝑏 =   − 1 − 𝑟𝑎

𝑑𝑒𝑠𝑎𝑡(𝑇𝑎)

𝑑(𝑇𝑎)

1

𝛾(𝑟𝑎 + 𝑟𝑐)
−

𝑅𝑛𝑗𝑟𝑎
2

𝜌𝑎𝐶𝑝𝛾(𝑟𝑎 + 𝑟𝑐)

𝑑2𝑒𝑠𝑎𝑡(𝑇𝑎)

𝑑𝑇𝑎
2

 

 

(37) 

 

𝑐 =  
𝜌𝑎𝐶𝑝𝐷

𝛾(𝑟𝑎 + 𝑟𝑐)
+

𝑟𝑎𝑅𝑛𝑗

𝛾(𝑟𝑎 + 𝑟𝑐)

𝑑𝑒𝑠𝑎𝑡(𝑇𝑎)

𝑑𝑇𝑎
+

1

2

(𝑟𝑎𝑅𝑛𝑗)
2

𝜌𝑎𝐶𝑝𝛾(𝑟𝑎 + 𝑟𝑐)

𝑑2𝑒𝑠𝑎𝑡(𝑇𝑎)

𝑑𝑇𝑎
2

 

(38) 

 

 

where 𝑟𝑎is the aerodynamic; 𝑟𝑐 is the canopy resistance; Rnj is the net radiation; 𝜌𝑎is the air 

density; 𝛾 is the psychrometric constant; 𝑒𝑠𝑎𝑡(𝑇𝑎) is the saturated water vapor pressure at 

temperature Ta.   

 

4.5 Daily Ensemble Value 

Differences in model structure provide a range in ET estimates to consider for each 70m pixel. 

Previous studies have shown the combination of an ensemble of modeled values provides 

improved or equal accuracy to any one given model [Kirtman et al., 2014].  Due to the limited 

number of models used within the JET algorithm, we adopt a simplified approach by taking the 

median value of the instantaneous ET ensemble (PT-JPLSM, MOD16, STIC, TSEB, & BESS). 

The ensemble median value is used to provide a daily estimate of ET for each 60 m pixel. 

Additionally, the uncertainty is estimated as the standard deviation of the ensemble for each 

pixel. 

 

5 Calibration/Validation 

5.1 ET evaluation 

To evaluate remote sensing ET datasets requires ground observations at similar length scales and 

temporal frequencies. Eddy covariance (EC) towers provide year-round observations at 

frequencies (~30 minutes) and spatial scales (10’s-100’s m) that capture exchanges of water 

vapor from the land surface to the atmosphere necessary to evaluate the JET ensemble. Here, we 

employ EC observations from the Ameriflux network due to their data collection standards, 

availability, and distribution across various land uses in North and South America. We only 

include EC towers in our analysis that are within SBG observations (<58oN & > 58oS), have data 

during SBG mission (2018-Present), and have a long-term closure ration of greater than 0.70. 

This filtering resulted in 74 towers across 11 land uses for the JET ensemble comparison (Figure 

X).  
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Figure X) Left: Distribution of filtered Ameriflux towers across North America within SBG 

view. Right: Range in EC towers’ mean annual precipitation (x-axis), temperature (y-axis) by 

vegetation class (color). 

 

EC data from Ameriflux are post-processed for quality and to ensure surface energy budget 

closure. Surface energy balance variables including sensible heat, latent heat, ground heat flux, 

and net radiation were filtered for outliers according to a median of absolute deviation about the 

median approach [Papale et al., 2006]. Next, the surface energy budget was closed while 

preserving the Bowen Ratio, the ratio of sensible heat to latent heat, following the EBC_CF 

Method 1 and EBC_CF Method 2 procedures of the OneFLUX processing [Pastorello et al., 

2020]. This closure approach yields energy closures according to the 25th, 50th, and 75th 

percentiles for dates spanning plus or minus 15 and 5 days respectively. Only cloud-free SBG 

observations are utilized in this analysis. Due to uncertainties and on-going debate about the 

surface energy imbalances from EC observations, we compute the statistics computed based on 

the best comparison across the raw observation and the closed budget options.  We compute 

statistics of unbiased root mean square error, mean absolute bias, and the correlation coefficient. 

 

Error Budget 

The SBG ET products will target an error value of 1 mm per day with an estimated 0.1 mm of 

this attributed to instrument error. This target is consistent with established literature and 

validation work on the related PT-JPL ET, DisALEXI-JPL ET, MOD16 and MYD16 ET 

products in recent years. Fisher et al. (2019) found that the RMSE of PT-JPL instantaneous ET 

was 6%, with R^2 = 0.88, (overall RMSE was 41.3 W/m2 compared to a mean of 182.0 W/m2 

and a range of 713.8 W/m2). An examination of the error propagation of PT-JPL ET from 

Halverson et al. finds that ET products exhibited strong responses to changes in vegetation and 

temperature; consistent with previous findings on DisALEXI-JPL ET which established that 

LST error within 1K enables ET estimates to be accurate to within 1mm/day (Cawse-Nicholson 

et al., 2020). In 2021, Cawse-Nicholson et. al, evaluated DisALEXI-JPL daily ET and found an 

RMSE of 0.81 mm/day. Mu et al. found that MOD16 and MYD16 exhibited an RMSE of 0.84 

mm/day. 
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5.2 WUE Evaluation 

BESS uses a carbon-water-coupled model to separately evaluate C3 and C4 species provided by 

a global map [Still, 2013 10.1029/2001GB001807] for a given pixel, the sum of that relative 

proportion of C3 and C4 in that pixel determines the GPP [Jiang et al., 2016]. The GPP product 

in kilograms of carbon per square meter estimated by BESS is ingested operationally into the 

data production stream to estimate water use efficiency (WUE). Process-based approaches like 

BESS have an advantage to represent the interaction between the soil system, plants, and 

atmosphere as an organic integration rather than ingesting GPP semi-empirically [Jiang et al., 

2016]. The carbon uptake is divided by the daily ET in kilograms per square meter to determine 

the ratio of grams of carbon fixed to kilograms of water lost in units of ET. This ratio describes 

the WUE, higher values indicate more plant productivity, lower values indicate less productive 

plants.  

 

 

𝑊𝑈𝐸  =  
𝐺𝑃𝑃

𝐸𝑇
 

(39) 

 

5.3 ESI Evaluation 

The Evaporative Stress Index (ESI) is used as a climate indicator of agricultural drought and 

plant stress by comparison of ET to PET to determine anomalous reduction in ET relative to 

potential ET. PET is already calculated internally in the PT-JPL algorithm and can be used 

directly to compute the ESI without ancillary information. 

 

 

𝐸𝑆𝐼  =  
𝐸𝑇

𝑃𝐸𝑇
 

(29) 

 

5.4 Ancillary variable evaluation 

 

EC towers commonly measure Ta, RH, and SM in addition to capturing exchanges of radiative 

energy, carbon, and water from the Earth’s surface and atmosphere. We utilize the same 

Ameriflux data source. Instead of screening for surface energy balance closure, we only consider 

the quality of each variable when considering data for use in this evaluation. For soil moisture, 

we only utilize EC towers data from the National Ecological Observation Network (NEON) due 

to the number of soil moisture observations.  Recently, the NEON towers provided a great 

comparison to evaluate the utility of remotely sensed soil moisture in forested and non-forested 

regions [Ayres et al., 2022]. For each variable we compute statistics of unbiased root mean 

square error, mean absolute bias, and the correlation coefficient. 
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6 Mask/Flag Derivation 
For Ts and es, the ECOSTRESS L2 flags are used to provide quality information for the L3 ET 

product.  
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7 Metadata 

• unit of measurement: Watts per square meter (W m-2) 

• range of measurement: 0 to 3000 W m-2 

• projection: SBG swath 

• spatial resolution: 60 m x 60 m 

• temporal resolution: dynamically varying with precessing ISS overpass; instantaneous 

throughout the day, local time 

• spatial extent: all land globally, excluding poleward ±60° 

• start date time: near real-time 

• end data time: near real-time 

• number of bands: not applicable 

• data type: float 

• min value: 0 

• max value: 3000 

• no data value: 9999 

• bad data values: 9999 

• flags: quality level 1-4 (best to worst) 
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