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Abstract 
 

The 2017-2027 Decadal Survey for Earth Science and Applications from Space (ESAS 

2017) was released in January 2018. ESAS 2017 was driven by input from the scientific commu-

nity and policy experts and provides a strategic vision for the next decade of Earth observation that 

informs federal agencies responsible for the planning and execution of civilian space-based Earth-

system programs in the coming decade. These include the National Aeronautics and Space Ad-

ministration (NASA), the National Oceanic and Atmospheric Administration (NOAA), and the 

U.S. Geological Survey (USGS). NASA has, thus far, utilized this document as a guide to inform 

exploration of new Earth mission concepts that are later considered as candidates for fully funded 

missions. High-priority emphasis areas and targeted observables include global-scale Earth sci-

ence questions related to hydrology, ecosystems, weather, climate, and solid earth. One of the 

Designated Observables (DO’s) identified by ESAS 2017 was Surface Biology and Geology 

(SBG) with a goal to acquire concurrent global hyperspectral visible to shortwave infrared 

(VSWIR; 380–2500 nm) and multispectral midwave and thermal infrared (MWIR: 3–5 μm; TIR: 

8–12 μm) image data at high spatial resolution (~30 m in the VSWIR and ~ 60 m in the TIR) at 

sub-monthly temporal resolution globally. The final sensor characteristics will be determined dur-

ing the mission formulation phase, but ESAS 2017 provides guidance for a VSWIR instrument 

with 30–45 m pixel resolution, ≤16 day global revisit, SNR > 400 in the VNIR, SNR > 250 in the 

SWIR, and 10 nm sampling in the range 380–2500 nm. It also recommends a TIR instrument with 

more than five channels in 8–12 μm, and at least one channel at 4 μm, ≤60 m pixel resolution, ≤3 

day global revisit, and noise equivalent delta temperature (NEdT) ≤0.2 K (NASEM, 2018; Schimel 

et al., 2020). Alone, SBG will provide a comprehensive global monitoring for multiple scientific 

disciplines. Complemented with systems like Landsat and Sentinel-2 VSWIR, global change pro-

cesses with faster than 16-day global change rates can be mapped. Further, complimented with 

planned TIR systems such as LSTM and TRISHNA, the temporal revisit could be as frequent as 

1-day at the equator, making the system excellent for tracking dynamic thermal features and haz-

ards. This document describes the planned Level-4 Volcanic Activity (VA) product for the SBG 

TIR data.  
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1 Introduction 

The Surface Biology and Geology (SBG) thermal infrared (TIR) instrument – termed the 

Observing Terrestrial Thermal Emission Radiometer (OTTER) consists of a TIR multispectral 

scanner with six spectral bands operating between 8.0 and 13.0 µm and two mid-infrared (MIR) 

bands between 3.0 and 5.0 µm, with a 60 m pixel resolution, an equatorial three day revisit, and a 

noise equivalent delta temperature (NEdT) ≤0.2 K (NASEM, 2018; Schimel et al., 2020). The TIR 

data will be acquired with a wide swath width of 935 km (60°) from an altitude of ~700 km. 

OTTER instrument design and data derive their heritage from the ECOSTRESS instrument, which 

is a five-channel multispectral TIR scanner that was launched to the International Space Station 

(ISS) in June 2018. ECOSTRESS has a 70-m spatial resolution with a wide swath width and revisit 

time that is variable between 3-5 days on average (Table 1). 

Table 1: SBG measurement characteristics compared to other operational and planned (*) spaceborne TIR 
instruments 

Instrument Platform Resolution (m) Revisit 
(days) 

Daytime 
overpass 

TIR bands 
(8-12.5 µm) Launch year 

OTTER SBG 60 3 12:30 6 2028* 

ECOSTRESS ISS 38 × 68 3-5 Variable 5 2018 

LSTM  50 4 13:00 5 2028* 

TRISHNA  57 2-3 13:00 4 2025* 

ASTER Terra  90 16 10:30 5 1999 

ETM+/TIRS Landsat 7/8 60-100 16 10:11 1/2 1999/2013 

VIIRS Suomi-NPP 750 Daily 1:30 / 13:30 4 2011 

MODIS Terra/Aqua 1000 Daily 10:30 / 13:30 3 1999/2002 
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GOES Multiple 4000 Daily Every 15 min 2 2000 

 

This document outlines the theory and methodology for generating the OTTER Level-4 

(L4) Volcanic Activity (VA) product. The VA product is only applied to a 50 km subset of the 

OTTER data centered on each of the world’s active and potentially active volcanoes (REFS). As 

such, it represents a small data volume. The VA uses the L2 land surface and emissivity (LSTE) 

product derived from the six TIR spectral bands to characterize the composition of volcanic 

plumes. The LSTE products are retrieved from the surface spectral radiance, which is obtained by 

atmospherically correcting the at-sensor spectral radiance. The VA also uses the L2 radiance at 

sensor product for the MIR and TIR to derive volcanic thermal flux. 

The remainder of the document will discuss the SBG instrument characteristics, provide a 

background on TIR remote sensing, give a full description and background on the volcanic tem-

perature and compositional modeling required for the VA product, provides quality assessment, 

discuss numerical simulation studies and, finally, outline a validation plan. 
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2 SBG Instrument Characteristics  

2.1 Band positions 
  

The TIR instrument will acquire data from a sun-synchronous orbit of ~700 km with 60m 

spatial resolution in eight spectral bands with two of those located in the MIR and six in the TIR 

region of the electromagnetic spectrum between 3 and 13 µm (Figure 2). The center position and 

width of each band is provided in Table 2. The positions of the first three TIR bands closely match 

those of the ASTER sensor (ASTER bands 10 – 12), whereas the longest two TIR bands match 

those of the MODIS sensor (MODIS bands 31-32), which are typically used for “split-window” 

type temperature applications (REFS). The OTTER band centered at 10.3 µm was added early in 

Phase A in order to detect surface mineralogy more accurately (e.g., distinguishing between sili-

cate feldspars and quartz) as well as sulfate aerosols conversion in volcanic plumes. The two MIR 

bands are present to detect a larger range of high surface temperatures (Figure 1) without saturating 

(e.g., 500 – 1200 K) as well as the potential of elevated CO2 emission sources using the 4.8 µm 

band. 

It is expected that small adjustments to the band positions, widths, and transmission will 

be made based on ongoing engineering filter performance capabilities and finalized once the filters 

are fabricated. 



SBG LEVEL-4 VOLCANIC ACTIVITY ATBD  

4 

 
Figure 1: SBG boxcar filters for the two MIR and six TIR bands from 3.8-12.5 microns with a typical at-
mospheric transmittance spectrum in gray highlighting the atmospheric window regions. Note the spectral 
width and position of the filters are nearly finalized, however the spectral shape will be determined after 
the detectors are fabricated. 
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Table 2: SBG band positions and characteristics 

Band # 
Center 

Wavelength 
(µm) 

Spectral Width 
(FWHM) (nm) 

Tolerance 
Center 

Wavelength 
(± nm) 

Tolerance 
Spectral 

Width (±nm) 

Knowledge 
Center Wave-
length (±nm) 

Knowledge 
Spectral Width 

(±nm) 
Accuracy 
(Kelvin) NEΔT (K) Range (K) 

MIR-1 3.98 20 50 10 10 10 ≤3@750 ≤0.3@750 700-1200 

MIR-2 4.8 150 100 50 20 20 ≤1@450 ≤0.2@450 400-800 

TIR-1 8.32 300 100 50 20 20 ≤0.5@275 ≤0.2@275 200-500 

TIR-2 8.63 300 100 50 20 20 ≤0.5@275 ≤0.2@275 200-500 

TIR-3 9.07 300 100 50 20 20 ≤0.5@275 ≤0.2@275 200-500 

TIR-4 10.30 300 50 50 20 20 ≤0.5@275 ≤0.2@275 200-500 

TIR-5 11.35 500 100 50 20 20 ≤0.5@275 ≤0.2@275 200-500 

TIR-6 12.05 500 100 50 20 20 ≤0.5@275 ≤0.2@275 200-500 
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2.2 Radiometer 
The TIR instrument will operate as a push-whisk mapper very similar to ECOSTRESS with 

256 pixels in the cross-whisk direction for each spectral channel. As the spacecraft moves forward, 

the scan mirror sweeps the focal plane image 68.8° across nadir in the cross-track direction, which 

enables a wide swath (935 km) from the spacecraft altitude of ~700 km. Each sweep is 256-pixels 

wide with the different spectral bands are swept across a given point on the ground sequentially. 

The scan mirror rotates at a constant angular speed and images two on-board blackbody targets at 

300 K and 340 K with each cross-track sweep every 1.29 seconds to provide gain and offset cali-

brations. 

 

Table 3: SBG TIR instrument and measurement characteristics 

Spectral 
Bands (µm) 4, 4.8, 8.32, 8.63, 9.07, 10.3, 11.35, 12.05 

Bandwidth (nm) 20, 150, 300, 300, 300, 300, 500, 500 
Accuracy at 300 K <0.01 µm 
Radiometric 
Range TIR bands (200 - 500 K) 

4 micron band (700 -1200 K) 
4.8 micron band (400 - 800 K)  

Resolution < 0.05 K, linear quantization to 14 bits 
Accuracy < 0.5 K 3-sigma at 275 K 
Precision (NEdT) < 0.2 K 
Linearity >99% characterized to 0.1 % 
Spatial 
IFOV 60m 
MTF >0.65 at FNy 
Scan Type Push-Whisk 
Swath Width at 665-km altitude 935 km (+/- 34.4°) 
Cross Track Samples 10,000 (check) 
Swath Length 10,000 (check) 
Down Track Samples 256 
Band to Band Co-Registration 0.2 pixels (12 m) 
Pointing Knowledge 10 arcsec (0.5 pixels) (approximate value, currently under evaluation) 
Temporal 
Orbit Crossing Multiple 
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Global Land Repeat Multiple 
On Orbit Calibration 
Lunar views 1 per month {radiometric} 
Blackbody views 1 per scan {radiometric} 
Deep Space views 1 per scan {radiometric} 
Surface Cal Experiments 2 (day/night) every 5 days {radiometric}  
Spectral Surface Cal Experiments 1 per year 
Data Collection 
Time Coverage Day and Night 
Land Coverage Land surface above sea level 
Water Coverage n/a  
Open Ocean n/a 
Compression 2:1 lossless 

 
 
 
3 Volcanic Plume Theory and Methodology 

3.1 Thermal Infrared Remote Sensing of Volcanic Plumes 

Volcanic sulfur dioxide (SO2) emissions provide insights into magmatic and hydrothermal 

processes internal to volcanoes (e.g., Oppenheimer et al., 2011), and the sulfate (SO4) aerosols 

resulting from volcanic emissions affect the Earth system on local (e.g., Longo, 2013), regional 

(e.g., Yuan et al., 2011), and global (e.g., Ivy et al., 2017) scales. Long-term (years to decades) 

archives of satellite-based observations of volcanic SO2 plumes and clouds have advanced our 

understanding of transport, dispersion, and chemical evolution of these emissions (Carn et al., 

2016). However, the satellite data records are based on UV, TIR, and microwave observations at 

coarse (tens to hundreds of km) spatial resolutions. In a recent review of the OMI data record of 

SO2 emissions, Carn et al. (2017) point to the need for satellite observations at finer spatial reso-

lutions to resolve the sources of volcanic plumes. In addition, the ability to map the SO2 content 

of emissions at their sources is a critical step in the accurate estimation of emission rates. OTTER 
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will provide global measurements of multispectral TIR radiance at the requisite spatial resolution 

of 60 m, with a repeat cycle of three days at the equator (Tables 1, 2). 

We detect and map volcanic plumes based on the absorption of TIR radiance passing 

through the plumes enroute to the sensor. Figure 3 presents transmission spectra for water vapor, 

together with several common components of volcanic plumes, superimposed on the spectral re-

sponse of the OTTER TIR channels. The water vapor transmission (Fig. 2a) defines the TIR at-

mospheric window between 7.5 and 12.5 µm. The transmission spectrum of SO2 (Fig. 1b) within 

the atmospheric window is characterized by an absorption feature centered at 8.7 µm, which is 

covered by the first three OTTER TIR channels (TIR-1 through TIR-3). The transparency of SO2 

at wavelengths greater than 9.5 µm enables our estimation of the temperature of surfaces radiating 

beneath SO2 plumes. The spectrum of silicate ash (Fig. 2c) is dominated by a broad convex ab-

sorption feature. The absorption at 11 µm is stronger than at 12 µm, leading to the operational 

detection of ash plumes by negative differences between the brightness temperatures at 11 and 12 

µm (e.g., OTTER channels TIR-5 and TIR-6).  

At the spectral resolution of SBG the spectrum of sulfate (SO4) aerosols (Fig. 2d) has fea-

tures similar to those of SO2 (absorption in TIR-1 through TIR-3) and ash (stronger absorption at 

TIR-5 relative to TIR-6). The concave inflection in sulfate transmission near 10.5 µm, covered by 

TIR-4, is not found in the SO2 or ash spectra. Similarly, TIR-4 covers a concave inflection in the 

transmission of ice (Fig. 2e). We will use TIR-4 to discriminate sulfate aerosols from SO2 gas, 

identify ice-mode meteorological clouds, and detect ice-coated particles of silicate ash. 
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We do not measure the transmission of plumes directly and must infer the plume transmis-

sion from the radiance at the sensor – or observed radiance - using radiative transfer (RT) model-

ing. The atmosphere emits and absorbs TIR radiance (Fig. 3), and the observed radiance includes 

the radiance welling up through the atmosphere (path radiance) and fraction of down-welling, or 

sky, radiance reflected off the surface and transmitted back up to the sensor. The observed radiance 

is a function of many factors, including the satellite, or view, zenith angle (VZA), surface temper-

ature, emissivity, and elevation, plume altitude, or height, thickness, and SO2 concentration, and 

 

Figure 2. Simulated transmission spec-
tra for (a) water vapor, (b) sulfur diox-
ide (SO2), (c) silicate ash, (d) sulfate 
(SO4) aerosol, and (e) ice, superimposed 
on the nominal positions of the OTTER 
TIR channels. 
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vertical distributions of atmospheric temperature and water vapor (H2O). These factors are input 

to the RT model to derive estimates of the observed radiance, and we vary the surface temperature 

and SO2 concentration to improve the fit between the observed and estimated radiance spectra. 

Given the computational expense of RT modeling, investigators have developed strategies 

to map SO2 plumes without calling RT models during the retrieval process (e.g., Corradini et al., 

2014; Pugnaghi et al., 2013, 2016; Piscini et al., 2014; Gabrieli et al., 2017). In general, these 

strategies are based on simulations (i.e., forward models) of observed radiance for ranges of model 

parameters, or model spaces, that best describe the states of plume properties, atmospheric condi-

tions, and surface conditions during the observations. Depending on the specific approach, hun-

dreds to millions of simulations are needed to generate look-up tables (LUT), derive para-metric 

expressions of TOA radiance vs. SO2 concentration, or train machine learning algorithms. Scaling 

forward-modeling strategies to global mapping is challenging due to the increases in the size 

and/or dimensions of the model space required to describe the variability of atmospheric condi-

tions, surface conditions, and plume properties across the globe. Forward-modeling strategies are 

best-suited for monitoring specific volcanoes or studying specific volcanic events, as these appli-

cations provide constraints on the size and dimensions of the model space. 

 

3.2 Global Mapping of Volcanic Plumes  

Our global mapping strategy will leverage key technological innovations developed for 

Plume Tracker, the JPL toolkit for the analysis of TIR spectra with interactive radiative transfer 

(RT) modeling (Realmuto et al., 1994, 1997; Realmuto and Worden, 2000; Realmuto and Berk, 

2016). Specifically, we will retain the accurate modeling realized with free model parameters while 
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improving the computational performance of the retrieval procedures. These innovations are sum-

marized below. 

 
Figure 3. Plume detection through transmission [t(λ)] based on the attenuation of surface radiance 
[ε(λ) B(λ,To)] passing through the plume enroute to the sensor: 

L(λ,To ) = {ε(λ) B(λ,To ) + [1 - ε(λ)] D(λ)}t(λ) + U(λ) 

The observed radiance [L(λ,To ); outlined arrow] includes the surface radiance (red arrow), 
reflected downwelling sky radiance [D(λ), yellow arrow], and upwelling path radiance [U(λ), blue 
arrow] 

Reconstruct Observed Radiance: 

• Transmission, sky radiance, and path radiance are estimated through radiative transfer (RT) 
modeling, cached, and re-used 

• Surface emissivity [ε(λ)] available from lab spectra, product archives, or calculated within 
scene 

• Surface temperature [To] estimated from radiance observations 
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3.2.1 SO2 Index Map  
 

The SO2 Index (Krotkov et al., 2021) is a proxy for SO2 absorption, and indicates the most 

likely locations of SO2 plumes within a scene. We limit the RT modeling to the spectra from these 

locations, thereby minimizing the number of calls to the RT model. The Index is the brightness 

temperature difference (BTD) at 8.7 µm scaled between 2 and 15 K (Fig. 4). For OTTER, the 

Index is calculated as the difference between the BT in TIR-2 and the maximum BT across the 

remaining TIR channels. The cut-off at 2 K improves the discrimination of SO2 absorption from 

water vapor absorption, as water vapor absorbs more strongly at 8.7 µm than at 11 or 12 µm. The 

upper limit of 15 K captures all but the strongest SO2 absorption without saturating the Index. The 

SO2 Index also serves as mask, or screen, for ice-mode meteorological clouds. 

To verify that the SO2 Index will be effective at detecting plumes over a wide range of 

plume heights and atmospheric conditions we processed VIIRS observations of plumes from Rai-

koke (Kurile Islands), Bardarbunga (Iceland), Lewotolo (Indonesia), and Kilauea Volcanoes (Fig. 

4). This set of test cases features plumes in sub-Arctic and Tropical climate zones, at heights rang-

ing from 2 to 13 km, and H2O content (expressed as total precipitable water) between 12 and 43 

mm of H2O. Our analysis indicates that the scaling range for the SO2 Index (2 – 15 K) provided 

successful plume detections for each test case. 
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3.2.2 Re-Use of Atmospheric Spectra  
 

 

Volcano Date Latitude 
(degrees) Plume Hight (km) Total Precipitable 

H2O (mm) 

(a) Raikoke 22 June 2019 50 N 10 – 13 22.4 

(b) Bardarbunga 5 Sept 2014 62 N 5-6 12.6 

(c) Lewotolok 29 Nov 2020 9 S 5-6 42.9 

(d) Kilauea 22 Dec 2020 19 N ~2 30.3 

Figure 4. The SO2 Index is a version of the BTD at 8.7 µm (VIIRS M14) scaled between 2 and 15 K. The 
cut-off at 2 K improves the discrimination of SO2 from water vapor (H2O) absorption, as H2O absorbs 
more strongly at 8.7 µm than at 11 or 12 µm. The upper limit of 15 K captures all but the strongest SO2 ab-
sorption without saturating the index. To test this range of scales, we analyzed VIIRS observations of 
plumes from (a) Raikoke (Kurile Islands), (b) Bardarbunga, (c) Lewotolo (Indonesia), and (d) Kilauea Vol-
canoes. This set of test cases features plumes in sub-Arctic and Tropical climate zones, at heights ranging 
from 2 to 13 km, and H2O content (expressed as total precipitable water) between 12 and 43 mm of H2O. 
The SO2 plumes were detected successfully in each test case. 
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Our retrieval procedures attempt to re-use model spectra generated by previous runs of the 

RT model before initiating a new run. The model spectra are cached as hash tables, or arrays of 

model spectra paired with an array of unique keys that index the spectral arrays. Each hash key is 

created by binning and concatenating the input parameters used to generate the corresponding 

model spectra. The hash key generated for an upcoming call to the RT model is compared against 

the keys compiled from previous calls and, if a match is found, the corresponding model spectra 

are returned to the retrieval procedure. If no matching key is found, the current key is added to the 

key array, the RT model is run, and the resulting spectra are cached to the hash tables. 

Unlike a conventional LUT, the hash table is generated dynamically, and the number of 

entries in the table is limited to the number of unique combinations of input parameters required 

by the analysis. For example, the analysis of a scene depicting a plume over an ocean, requiring 

little change in the surface elevations input to the RT model, will require fewer entries in the hash 

table than an analysis of a plume over mountainous terrain. 

 

3.2.3 Reconstruction of Radiance Spectra  
 

 Surface temperature and emissivity can vary widely within a satellite scene and, to promote 

the re-use of cached spectra, we exclude surface temperature and emissivity in the generation of 

hash tables. For a line-of-sight (LOS) through the atmosphere (Fig. 4), the observed TIR radiance, 

Ls, can be described with a simplified version of Eq. 1: 

 Ls(λ, To) = {ε(λ)B(λ, To) + [1 - ε(λ)]Ld(λ)}τ(λ) + Lu(λ),         (2) 
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where To represents the surface temperature, ε(λ) represents the surface emissivity, B(λ, To) rep-

resents the Planck Blackbody function, τ(λ) represents the spectral transmittance of the atmos-

phere, and Lu(λ) and Ld(λ) represent the upwelling path and downwelling sky radiance produced 

by the atmosphere. To simplify notation, we have omitted the functional dependence of these pa-

rameters on the VZA, and note that τ(λ), Lu(λ), and Ld(λ) are integrals over the LOS.  

We cache the atmospheric spectra, τ(λ), Lu(λ), and Ld(λ), as described in the previous sec-

tion. These spectra are not sensitive to surface temperature or emissivity and, when the retrieval 

procedures call for model radiance, we reconstruct the requested spectra from the corresponding 

atmospheric spectra, surface temperature, and emissivity. Radiance reconstruction increases the 

utilization of cached spectra to rates > 95%, meaning that fewer than five out of every 100 calls to 

the RT model require unique runs of the RT model. 

 

3.2.4 Transmission-Mode Retrievals  
 

The Transmission-Mode Retrievals are an extension of the Radiance Reconstruction ap-

proach. Conventional, or Full-Mode, RT modeling generates τ(λ), Lu(λ), and Ld(λ), and total LOS 

radiance spectra (Eq. 2), whereas Transmission-Mode RT modeling generates only τ(λ). The 

Lu(λ), and Ld(λ) spectra are necessary for the estimation of surface temperature.  If we assume that 

these components are not sensitive to changes in SO2 concentrations, we can employ Transmis-

sion-Mode modeling and re-use the Lu(λ), and Ld(λ) spectra from our temperature estimations to 

reconstruct observed radiance for our estimations of SO2 concentration. Our testing of Transmis-

sion-Mode Retrievals (Fig. 5) indicate that we can achieve 25-50% reductions in processing time 

with no significant losses in accuracy. 
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Figure 5. We are most interested in the absorption of surface radiance transmitted through the plume and 
can assume that the upwelling and downwelling atmospheric components are not sensitive to SO2 concen-
trations. Full-mode RT modeling generates the sky, path, and surface radiance, and is necessary for the 
estimation of surface temperature. Transmission-mode RT modeling generates LOS transmission, simpli-
fying the calculations. Our comparison of simulated (a) Full-Mode and (b) Transmission-Mode Retrievals 
indicates no significant losses in accuracy.  In this simulation, the Transmission-Mode retrievals achieved a 
47% reduction (141.7 vs. 267.5 s) in processing time. 

 
3.3 Environmental Sources of Uncertainty 

Given the dependence of observed radiance on properties of the surface and atmosphere, 

uncertainties in our knowledge of these properties will map into errors in our estimates of surface 

temperature and SO2 concentration. Here we describe our strategies for addressing these uncer-

tainties.  

 

3.3.1 Surface Emissivity  
The 60-m spatial resolution of OTTER will allow us to map the source vents for SO2 

plumes. With this ability, we must account for the effects of land surface emissivity on the ob-

served radiance spectra (Fig. 4) and, ultimately, SO2 retrievals. The assumption of blackbody emis-

sivity for exposed, or non-vegetated, surfaces will often lead to false detections of SO2. The prob-

(b) (a) 
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lem of false detections is most significant in arid regions, which feature quartz-rich sand and sul-

fate-rich dry lake deposits. At the coarse spectral resolution of SBG, the emissivity spectra of 

quartz sand and sulfate minerals are very similar to the absorption spectrum of SO2 (Fig. 6). 

 
Figure 6.  Surface emissivity is a confounding factor for SO2 detection, as demonstrated by model spectra 
(solid lines) generated for SO2-free atmospheric profiles over simulated surface compositions of (a) quartz 
sandstone, (b) pahoehoe lava from Kilauea Volcano, and (c) gypsum. Assuming the surfaces are blackbod-
ies (emissivity = 1), attempts to fit the model spectra by varying only surface temperature fail (dashed 
lines). The fit improves if SO2 is introduced as a free parameter (broken lines), with the penalty of false, or 
apparent, SO2 detections. The false detections are largest for sandstone and gypsum, due to the overlap be-
tween emissivity minima and SO2 absorption. As a rule, the assumption of black-body emissivity for ex-
posed (non-vegetated) surfaces will lead to false detections of SO2. 
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We demonstrate the impact of emissivity on SO2 retrievals by simulating radiance spectra 

for surfaces composed of quartz sandstone, pahoehoe lava from Kilauea Volcano (Hawaii), and 

gypsum (Fig. 6). In each case, we generated radiance spectra for SO2-free atmospheric profiles 

and then estimated the surface temperature and SO2 column density with the assumption that the 

surface was a perfect emitter (emissivity = 1), or blackbody. This assumption is common in cases 

where the surface emissivity is not known and is explicit in the conversion of radiance spectra to 

brightness temperature spectra. 

The impact of the blackbody assumption on radiance (Fig. 6) is indicated by the misfit 

between the surface temperature retrievals (dashed lines) and forward models (solid lines). We can 

improve the fit by adding SO2 to the atmospheric profiles, with the penalty of false, or apparent, 

SO2 retrievals.  The impact of the blackbody assumption on SO2 retrievals is most acute in cases 

where minima in the surface emissivity spectra overlap the absorption spectrum of SO2. Accord-

ingly, the emissivity effects, quantified as apparent SO2 retrievals, are larger for quartz sandstone 

(Fig. 6a) and gypsum (Fig. 6c) than the Kilauea lava (Fig. 6b). 

We can minimize the impact of surface emissivity on the detection of SO2 through an ex-

plicit correction for surface emissivity, as demonstrated with VIIRS data from Mt. Etna, Sicily 

(Fig. 7). The SO2 Index delineates the plume (yellow circle, Fig. 7a), but we find much larger 

index values - indicating larger BTD - over North Africa due to deposits of quartz-rich sand. We 

eliminate most of the emissivity related BTD enhancements by dividing the observed radiance 

spectra by emissivity spectra prior to calculating the BTD (Fig. 7b). The emissivity correction did 

not eliminate the enhancement of BTD due to H2O absorption, which was stronger at the margins 

of the scene (VZA ≥ 50°) due to the longer optical paths through the atmosphere. We attenuate the 

BTD at the scene margins by applying a gradient, or ramp, as a function of VZA (Fig. 7b). The 
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ramp function preserves some of the information in the scene margins, as opposed to cutting off 

the BTD associated with larger VZA.  

 

Figure 7. Surface emissivity and water vapor (H2O) absorption are confounding factors for SO2 detection, 
as demonstrated by VIIRS-N20 TIR data acquired over Mount Etna on 27 Dec 2018 at 11:48 UTC.  (a) 
The emissivity of quartz sandstone (Fig. 5a), together with water vapor absorption (Fig. 1a), mimic SO2 
absorption and result in false detections of SO2. (b) We minimize the false detections by applying emissivity 
correction and a gradient function scaled to the satellite, or view, zenith angle (VZA). 
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We simulated VIIRS (NOAA20) emissivity spectra for this scene from the Combined AS-

TER MODIS Emissivity over Land (CAMEL) database (Loveless et al., 2021; Borbas et al., 2018; 

Feltz et al., 2018). The global CAMEL spectra are available as a monthly climatology for the Years 

2000 – 2016, with a grid spacing of ~5 km. For the PGS we will generate custom emissivity data-

bases corresponding to the spectral channels of OTTER, and then provide emissivity spectra to the 

PGS on demand by indexing the databases by time (i.e., month) and location. 

We will use the CAMEL climatology to describe surface emissivity at the start of the SBG 

mission, gradually replacing the CAMEL spectra with a climatology of OTTER emissivity spectra. 

The time dimension of the climatology is critical, as we will average the OTTER spectra over time 

to generate “plume-free” maps of surface emissivity.  Emissivity spectra calculated for lines-of-

site (LOS) through a plume will map the absorption of radiance by SO2 into the derived emissivity 

spectra. An SO2 retrieval based on the use of such corrupted emissivity spectra would report zero 

SO2 in the LOS.  

 

3.3.2 Atmospheric Temperature and Humidity 
 

 Atmospheric profiles of temperature and water vapor (H2O) content are critical inputs to 

the retrieval procedures, as these properties define the temperature of entrained SO2 plumes and 

the control the transmission and emission of radiance in the atmosphere. Atmospheric profiles are 

available from a variety of sources, as we demonstrate (Fig. 8) with a comparison of profiles meas-

ured with a radiosonde launched from Hilo, Hawaii (6 May 2018, 00:00 UTC), derived from AIRS 

and MODIS data, and output from the Modern-Era Retrospective Analysis for Research and Ap-

plications, or MERRA-2, reanalysis (Rienecker et al., 2011).  
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The agreement between the derived and model temperature profiles and the radiosonde 

temperature profile is very good (Fig. 8a), although neither the radiosonde nor the MODIS profiles 

provide temperature information for altitudes above 35 km (red circle). However, there are signif-

icant differences between the H2O profiles. At the altitude of 2 km (a typical altitude for Kilauea 

plumes) the MERRA-2 reanalysis (Fig. 8b) over-estimated the H2O by 22%, relative to the Hilo 

radiosonde, and the MODIS and AIRS profiles (Fig. 8c) under-estimated the H2O by 56%. The 

overestimation of H2O led to overestimation of SO2, and the under-estimation of H2O led to un-

der-estimation of SO2. 

 
Figure 8. Uncertainties in our knowledge of atmospheric temperature and H2O content translate into un-
certainties in our SO2 estimates. Here we compare temperature and H2O profiles measured by a radio-
sonde launched from Hilo, Hawaii (6 May 2018, 00:00 UTC) with corresponding profiles derived from 
AIRS (red) and MODIS (blue) data and model output from MERRA-2 reanalysis (yellow).  
(a) The derived and model temperature profiles agree well with the radiosonde temperature profile. Nei-
ther the radiosonde nor the MODIS profiles provide temperature information for altitudes above 35 km 
(red circle). The estimation of water vapor is more challenging. (b) The MERRA-2 reanalysis over-esti-
mates the H2O at 2 km (dashed line), a typical altitude for Kilauea plumes, by 22%, relative to the radio-
sonde. (c) The MODIS and AIRS profiles under-estimate the H2O by 56%. 

 

Recognizing that we will never have perfect knowledge of atmospheric conditions, we will 

opt for the consistent and easily accessible atmospheric profiles provided by numerical weather 
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prediction (NWP) models. Specifically, we will incorporate the Forward Processing for Instrument 

Teams (FP-IT) products distributed by the NASA Global Modeling and Assimilation Office 

(GMAO) as part of the Goddard Earth Observation System Version 5 (GEOS-5) family of models. 

GEOS-5 FP-IT was designed specifically to provide long-term and reproducible characterization 

of atmospheric conditions for instrument science teams, and current clients of FP-IT include 

MODIS, OMI, OMPS, and the Ecosystem Spaceborne Thermal Radiometer Experiment on Space 

Station (ECOSTRESS). FP-IT will also support retrospective analyses of historic satellite data 

records. 

The use of model output to characterize atmospheric conditions has another advantage for 

our retrieval procedures. Temperature and H2O profiles derived from satellite data will be corrupt-

ed by the presence of SO2 plumes and met clouds, and such corruption will defeat our procedures 

to detect SO2 plumes and met clouds. Although we can screen the satellite-based profiles for qual-

ity flags indicating corruption by plumes or clouds, such screening may well leave us with no 

atmospheric profiles in the vicinity of the targeted volcanoes. The FP-IT model output represents 

an idealized state of the atmosphere that is well-suited for our plume detection procedures. 

 

3.3.3 Plume Altitude  
 

The strength of SO2 absorption is a function of the gas concentration within a plume and 

the contrast between the temperatures of the plume and underlying radiating surface. The impacts 

of gas concentration and temperature contrast on absorption are inversely proportional, so we must 

specify the plume temperature when estimating SO2 concentrations. The down-wind, or entrained, 

portions of plumes are in thermal equilibrium with the surrounding atmosphere, and we assign the 
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plume temperature to the air temperature at plume height, as described by the input profile of 

atmospheric temperature.  

We illustrate the impact of plume 

height on SO2 estimates with an analysis of 

VIIRS observations of Kilauea Volcano on 22 

Dec 2020, during the recent renewal of erup-

tive activity at the summit (Fig. 9). A decrease 

in the model plume height from 2.7 (Fig. 10a) 

to 1.5 km (Fig. 9b) resulted in a gain of ~1 x 

106 kg of SO2 in the resulting estimates. The 

decrease in plume altitude increased the 

plume temperature from 282 to 287 K, thus re-

ducing the contrast between the plume and 

surface temperatures. As the temperature con-

trast decreases, more SO2 is required to pro-

duce the observed absorption.  

For most situations, the plume heights 

will not be known prior to the automated PGS 

processing. To accommodate the potential 

range in plume heights we will derive SO2 es-

timates at model heights of 0.9, 2.5, 7.5, and 

17 km. These model heights are the same heights, or centers-of-mass altitude (CMA), employed 

 

Figure 9. TIR-based estimates of SO2 column density 
are sensitive to the model altitude, or height, of the 
plume, as demonstrated by this analysis of VN20 
data for the recent eruption of Kilauea Volcano. A 
decrease in model plume height from (a) 2.7 to (b) 
1.52 km resulted in the loss of ~ 1 x 106 kg of SO2 
from the apparent Total Mass.  
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in generating SO2 estimates from OMI and OMPS observations [Li et al., 2013; 2017]. By match-

ing up the model heights, we will facilitate our comparisons between TIR- and UV-based SO2 

retrievals. 

3.4 Estimation of Surface 
Temperature and SO2 
Concentration 

 As we demonstrated in the 

previous section, the absorption of 

SO2 is a function of both the tem-

perature contrast (parameterized 

by surface temperature) and SO2 

concentration. Here we explore the 

estimation of surface temperature 

and SO2 concentration from a radi-

ance measurement in a single 

channel centered at 8.5 µm (analo-

gous to TIR-2). Figure 10 depicts 

the least squares misfit between a 

radiance spectrum calculated with 

a surface temperature of 305 K and 

SO2 concentration of 10 mg m-3, 

and radiance spectra calculated for 

ranges of temperatures and con-

centrations that are centered on the 

true input values.  

 

Figure 10. Misfit surface demonstrates the influence of surface 
(ground) temperature and SO2 concentration on observed 
radiance. (a) The temperature is well-constrained by the 
observations, as shown by a profile parallel to the temperature 
axis. The misfit surface has steep gradients to the “true” surface 
temperature (305 K). (b) The SO2 concentration is poorly 
constrained, by the observations, as shown by a profile parallel to 
the SO2 axis. The misfit surface has shallow gradients, 10x 
shallower than the temperature gradients, to the “true” 
concentration (10 mg/m3). The lack of constraint on SO2 
concentration is a challenge for the simultaneous estimation of 
temperature and concentration. Our 2-step approach is to 
estimate the temperature corresponding to a SO2 concentration of 
0 and then use this temperature to estimate the concentration.  
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The misfit surface resembles a flat-bottomed valley aligned parallel to the SO2 concentra-

tion axis, with a steep gradient to the input surface temperature (Fig. 10a) and shallow gradient to 

the input SO2 concentration (Fig. 10b), indicating that surface temperature is well-constrained by 

the radiance but the SO2 concentration is poorly constrained. We address this difference in the 

constraints on input parameters by estimating the surface temperature and SO2 concentration in 

separate steps. In practice we use the full spectrum of observed radiance, rather than a single chan-

nel, to estimate surface temperature and SO2 concentration, and the transparency of an SO2 plume 

at wavelengths longer than 9.5 µm (Fig. 2b) facilitates the estimation of the surface temperature. 

 

3.4.1 Inputs to Estimation Procedures 
 

 The principal input data for the estimation procedures are Level 1B (L1B) products and, 

for the sake of brevity, we incorporate observed radiance, VZA, DEM, and geolocation products 

into the category “L1B products.” Of the remaining inputs, the SO2 Index Map is generated from 

L1B radiance, while the CAMEL emissivity database and atmospheric temperature and H2O pro-

files are independent of L1B. 

 

3.4.2 Product Generation System (PGS) 
 

Here we present an overview of the Product Generation System, or PGS (Fig. 11), followed 

by more detailed discussions of components of the system. We demonstrate the processing flow 

with an analysis of MODIS-Aqua (MYD) observations of Bardarbunga Volcano on 5 September 

2014. 
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Figure 11. Demonstration of the Product Generation System (PGS) with MYD observations of the Bardar-
bunga Eruption on 5 Sept 2014 (03:25 UTC). The SO2 Index Map (a), based on BTD, restricts the initial 
RT modeling to likely plume locations. The Surface Temperature Map (b) is based on RT modeling that 
does not incorporate the presence of plumes or meteorological (met) clouds. The Misfit Map (c) that results 
from temperature estimation indicates the location of plumes and met clouds. The Plume Location Map 
(d), based on cloud-screening and thresholding of misfit values, restricts the RT-based estimation of SO2 
Column Density (e) to the most likely plume locations. The plume locations are not apparent in the Surface 
Temperature (b) or Final Misfit Maps (f), indicating that the temperature and SO2 estimates were not bi-
ased systematically. 
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The SO2 Index Map (Fig. 11a) restricts the initial round of RT modeling to likely plume 

locations and, in this example, eliminates 78% of the pixels in the MYD scene from further con-

sideration. Our estimation of surface temperature (Fig. 11b) requires a single Full-Mode run of the 

RT model. We do not consider the presence of volcanic plumes or meteorological (met) clouds 

when estimating temperature and, accordingly, the temperature misfit map (Fig. 11c) indicates the 

locations of plumes and met clouds. 

The SO2 Index Map is a screen for ice-mode clouds, but we must separate water-mode 

clouds from volcanic plumes explicitly. We identify water-mode clouds through comparison of 

the surface temperature estimates (To) with the air temperature at surface elevation (Tair), as de-

fined by the input temperature profile and DEM. We flag locations where Tair ≥ To as locations 

where the surface was obscured by met clouds or the optical depth of the plumes was too high to 

transmit ground-leaving radiance. In practice, we assign thresholds to the difference (Tair – To) to 

accommodate variability in cloud optical depth and atmospheric conditions. 

We combine the cloud detections and temperature misfit map (Fig. 11c) to construct a 

plume location map (Fig. 11d) which, in this example, eliminates 93% of the pixels in the scene 

from further consideration. The second, and most expensive, round of RT modeling is limited to 

the plume locations, producing maps of SO2 column density (Fig. 11e) and final misfit (Fig. 11f). 

The estimation of SO2 requires multiple Transmission-Mode runs of the RT model.  

The absence of expressions of plume locations in the Surface Temperature Map (Fig. 11b) 

indicates that the Bardarbunga plume was transparent in at least one of the MYD channels and the 

surface temperature estimates were not biased by the optical depth of the plume. The absence of  

expressions of plume location in the Final Misfit Map (Fig. 11f) indicates that the corresponding 

retrieval results were not biased systematically. 
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3.4.3 Output Data  
The VA algorithm will run on the L2 surface radiance data over a 50 km by 50 km region 

of interest (ROI) centered on the world’s ~ 1500 most (and potentially) active volcanoes (REF). 

Initially, the decorrelation stretch (DCS), SO2 Index, and Ash Index images are produced and used 

as a gateway test for more rigorous species retrievals. If either ash or SO2 are detected in the index 

images, the algorithm will implement the radiative transfer (RT) modeling to produce the follow-

ing data layers: SO2 Column Density – PBL, SO2 Column Density – TRL, SO2 Column Density – 

TRM, SO2 Column Density – STL, and SO2 Uncertainty (see Table 4). 

 
 
4 Thermal Flux: Theory and Methodology 

4.1 Thermal Anomaly Detection 
The data from spaceborne sensors have been used to detect and monitor volcanic eruptions 

and wildfires from the earliest days of the satellite era (e.g., Gawarecki et al., 1965; Williams and 

Friedman, 1970; Scorer, 1986). These studies focused mostly on hot spot detection and tempera-

ture measurements using TIR data. They became ever more complex with the launch of new sen-

sors providing better spatial, temporal, and spectral data. For example, the ability to extract critical 

information from the subtle phases of precursory activity to the detailed spectral mapping of the 

erupted products grew exponentially (Ramsey and Harris, 2013).  

The ever increasing amount of orbital data has resulted in a wide range of temporal and 

spatial scales with a large number of algorithms designed to automatically detect pixels that are 

deemed “thermally anomalous”. These detection algorithms are commonly rooted in analysis of 
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the spatial, spectral, and/or temporal (or some combination thereof) scales of the data. For exam-

ple, an algorithm may use the change in temperature of a region over time to identify the appear-

ance of a thermal anomaly (e.g., Tramutoli et al. 1998), whereas other approaches determine the 

radiance difference between bands (e.g., Wright et al., 2002), or that spectral changes over a spatial 

area (Coppola et al., 2016) to identify an elevated temperature feature (e.g., Figure 1). 

Whether a thermal anomaly detection algorithm operates by assessing radiance (or temper-

ature) in spectral, spatial, or temporal space, the methods can be divided into four categories: fixed 

threshold, contextual, temporal, or hybrid. Fixed threshold algorithms are spectrally based and use 

data for a single pixel to assess whether the radiance (or temperature) in the MIR and/or TIR bands 

is thermally anomalous. In contrast, contextual algorithms use the difference between a pixel’s 

radiance (or temperature) and that of its surrounding pixels (e.g., “the background temperature”) 

to assess its state. Temporal algorithms operate by comparing a pixel’s radiance (or temperature) 

with the preceding historical values for the same pixel over time. These time series allow typical 

pixel values for any given time of day and year to be defined, and divergences from the baseline 

to be statistically assessed. However, by definition, they rely on prior data and become more ap-

propriate with increasing mission durations. More recent algorithms have incorporated aspects of 

one or more of these three categories and are dubbed hybrid approaches. Many of these algorithms 

are now benefiting from the application of Artificial Intelligence (AI) models to improve these 

prior statistical approaches (REFS). 

4.2 The ASTAD Algorithm 
ASTAD is the most complex statistically based approach that automatically detects the 

entire temperature range of thermal anomalies in both day and night ASTER TIR data (Ramsey et 

al., 2023). Significantly, ASTAD also produces a very low percentage of false positives and is 
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excellent for extracting subtle (< 2 K) thermal anomalies. The algorithm contains four main steps: 

(1) image pre-processing, (2) background normalization, (3) Gabor-based filtering, and (4) anom-

aly identification. It also addresses issues that historically have plagued past algorithms applied to 

high spatial resolution TIR data (e.g., clouds, gas plumes, solar-heated slopes in daytime TIR data, 

etc.). 

Machine Learning (ML) modeling has been applied to the ASTAD data using a convolu-

tional neural network (CNN) deep learning model, whose structure is inspired by the brain's pri-

mary visual cortex allowing it to replicate the way in which it detects thermal anomalies in an 

image (Corradino et al., 2023). CNN exploits deep, locally connected layers to extract discrimina-

tive features (e.g., the spatial distribution of thermal anomalies) and classifies pixels in anomalies 

and background. The ML model is a supervised CNN, i.e. UNET (Ronneberger et al., 2015), and 

it was trained on ASTER TIR Band 13 (10.25–10.95 µm) data using the results from the original 

ASTAD study (Ramsey et al., 2023) for the labeling phase. More information about the perfor-

mance of the ASTAD and ML approach are available in the L3 ETF ATBD.  

4.2.1 Heat Flux 
The radiative heat flux of volcanic surfaces (e.g., edifices, lava domes, lava flows, plumes) 

are calculated with respect to surface kinetic temperature and emissivity. The methods used to 

calculate the radiant flux follow prior approaches described using satellite and ground based TIR 

datasets (Harris, 2013). Radiant heat fluxes (Φrad) are calculated using the OTTER derived surface 

temperature (Ts), ambient surface temperature (Ta), and spectral emissivity (ε): 

Φrad = ε ∗ σ (Ts4 − Ta4) ∗ A 

where σ is the Stefan-Boltzmann constant in Wm−2 K−4 and A is pixel area in m2.  
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The background surface temperatures are derived using the ASTAD algorithm through the 

use of an annulus approach for each scene screened. The annulus is characterized by an inner and 

outer radius that is grown outward from the volcano's summit, and the median absolute deviation 

(MAD) is computed for each annulus iteration (i.e., increase in radius pixel by one). The optimal 

background annulus has the lowest dispersion values (local minimum of the MAD trend) after 

extending beyond the 2-sigma (87% percentile) maximum in the MAD trend. The annulus area is 

centered on the summit (Murphy et al., 2011), but no further constraints are made based on summit 

elevation, edifice size, season, or time of day. The inner and outer radius of the annulus vary for 

each scene so as not to encroach on any anomalous pixels. Specifically, the inner radius is located 

on the outside of the most distal thermal anomaly detected, with the outer radius located ∼450 m 

from the inner radius position. This produces a minimum background area of ~338 OTTER TIR 

pixels (1.22 × 106 m2) with an average of ∼900 pixels (3.24 × 106 m2), which is statistically large 

for the scale of OTTER data (Vaughan et al., 2010). The background temperature value for each 

scene (Ta) is the mean value of the circle area minus any outlying values. 

The size of the background area varies dynamically depending on the volcanic activity, 

from a smaller region closer to the summit for several thermally elevated pixels in the crater, for 

example, to a larger number extending to neighboring topographic peaks at similar elevations and 

orientations, for much larger anomalies like long lava flows (Carter et al., 2009; Pieri and Abrams, 

2005; Raheja et al., 2013; Ramsey and Dehn, 2004). Importantly, these areas account for a range 

of background temperatures that are influenced by solar heating from variations in slope, aspect, 

and solar azimuth (Carter et al., 2009; Murphy et al., 2011; Vaughan et al., 2010). Because of the 

complications of solar heating sometimes producing temperatures higher than the actual anomalies 

themselves, many prior algorithms only focus on nighttime TIR data. However, this severely limits 
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the data availability for higher spatial resolution sensors like OTTER. Therefore, the adoption the 

annulus approach to derive a background area independent to the volcano's orientation with respect 

to the sun and size of the anomaly, allows the accurate integration of daytime data. The background 

temperature derived from the annulus is subtracted from the surface temperature of each detected 

anomalous pixel to produce the temperature above background (TAB). 

 

4.2.2 Output Data 
 

T.B.D. once final algorithm choice is determined 
 

 

5 Volcanic Activity (VA) Algorithm 

5.1 Operational Workflow 
 

T.B.D. once final algorithm choice is determined 
 

5.2 Output Data Layers 
 

T.B.D. once final algorithm choice is determined 
 

5.3 Low Latency 
The VA will also be produced as a low latency (LL) product available within 24 hours of 

data acquisition. Unlike the full L4 product, the LL-VA will operate on the radiance-at-sensor data 
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and only produce the DCS and two index maps (ash and SO2) over targets with a positive detection. 

Without atmospheric correction, the uncertainty is expected to be higher. 
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6 Uncertainty Analysis 

6.1 Plume Tracker Sensitivity to Plume Height and Water Vapor 

Figure 12 shows the results of simulations to assess the sensitivity of surface temperature 

and SO2 retrievals to temperature contrast (parameterized as vertical plume top height, or VPTH) 

and total column water vapor (H2O). The RMS combination of uncertainties due to VPTH and 

H2O is 12%, and the real-world uncertainty is likely closer to 15%. 

 The simulations were based on the 27 Dec 2018 eruption plume from Mount Etna,  Trapani 

(Sicily) radiosonde profile for the lower atmosphere, and AIRS atm profile for the upper atmos-

phere. The inputs to the forward model were as follows: 

• VPTH: 4.5 km 

• Plume Thickness: 1 km 

• Surface Temperature: 290.0 K 

• SO2 Concentration: 2.5 ppm 

The temperature estimation procedure is weighted to prevent underestimates (Fig. 12a), 

and the estimates are insensitive (± 0.4%) to the plume height. Decreasing water vapor (Fig. 12b) 

increases atmospheric transmission, and lower surface temperatures are required to produce the 

observed radiance. Conversely, increasing water vapor decreases transmission and higher surface 

temperatures are required to produce the required radiance. However, the estimation errors are less 

than 0.5%.  

The SO2 estimates are very sensitive to the temperature contrast (Fig. 12c). The errors in-

crease (up to 40%) with decreasing plume height, which results in decreasing temperature contrast.  
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The errors decrease (< 20%) with increasing plume height, which results increasing tem-

perature contrast. The apparent decrease surface temperature due to decreasing water vapor in-

creases the SO2 estimates (Fig. 12d). Conversely, the apparent increase in surface temperature due 

to increasing water vapor decreases the SO2 estimates. The maximum estimation error approaches 

20% but is generally less than 10%. 

 

Figure 12. Sensitivity of surface temperature (top row) and SO2 concentration (bottom row) to errors in 
our knowledge of plume height (left column) and atmospheric water vapor (right column). The true values 
for height and water vapor scaling factor are indicated with the vertical lines. We use plume height to pa-
rameterize the temperature contrast between the plume (assumed to be at ambient air temperature) and 
underlying surface. (a) The temperature estimation procedure is weighted to prevent underestimates, and 
the estimates are insensitive (± 0.4%) to the plume height. (b) Decreasing water vapor increases atmos-
pheric transmission and lower surface temperatures are required to produce the observed radiance. Con-
versely, increasing water vapor decreases transmission and higher surface temperatures are required to 
produce the required radiance. However, the estimation errors are < 0.5%. (c) The SO2 estimates are very 
sensitive to the temperature contrast. The errors increase (up to 40%) with decreasing plume height, which 
results in decreasing temperature contrast. The errors decrease (< 20%) with increasing plume height, 
which results increasing temperature contrast. (d) The apparent decrease surface temperature due to de-
creasing water vapor increases the SO2 estimates. Conversely, the apparent increase in surface tempera-
ture due to increasing water vapor decreases the SO2 estimates. The maximum estimation error ap-
proaches 20% but is generally < 10%. 
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6.2 ASTAD Sensitivity to NEDT 

The OTTER instrument is anticipated to have an NEΔT of 0.2 K at 300 K, which corre-

sponds to an average NEΔL of 0.030917 Wm-2sr-2µm-1. To evaluate the sensitivity of the algo-

rithms to a reduction in instrument performance on orbit the NEΔT is increase to 1.0 K at incre-

ments of 0.2 K. 

 
Figure 13: Modeled SBG NEΔT versus scene temperature for the two MIR and six TIR bands with time 
delay integration (TDI). 

The results of degradation in instrument performance on-orbit are shown in figure 14. For 

ASTAD a decrease in OTTER instrument performance would result in a slight decrease in preci-
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sion (<2%) but a significant increase in F1 score and Recall (<35%). A decrease in on-orbit OT-

TER instrument performance from 0.2 to 1.0 K NEΔT would result in accuracy and precision 

metrics remaining mostly constant within ±7% (Figure 14).  

 

 

Figure 14: The algorithm detection precision and accuracy changes in ASTAD and ASTAD-ML as a result of 
OTTER instrument on-orbit performance degradation.  

 

 

6.3 Total Uncertainty 

T.B.D. once final algorithm choice is determined 
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7 Scientific Data Set (SDS) Variables 
 
Table 4. The Scientific Data Sets (SDSs) for the SBG L4 VA product. 

SDS Long Name Data type Units Valid 
Range 

Fill Value Scale 
Factor 

Offset 

Group SDS 
VAI Volcanic Activity Index Uint8 0-100  0   
DCS DCS Image 24-bit color n/a  0   
SO2I SO2 Index Int8 n/a  0   
AshI Ash Index Int8 n/a  0   
Anom Anomaly Detection Int8 n/a  0   
Tbkg Background Tempera-

ture Float32 K 
 0   

Tele Elevated Temperature Float32 K  0   
HF Heat Flux Float32 MW  0   
SO2-PBL SO2 Column Density - 

PBL Float32 g/m2 
 0   

SO2-TRL SO2 Column Density - 
TRL Float32 g/m2 

 0   

SO2-TRM SO2 Column Density - 
TRM Float32 g/m2 

 0   

SO2-STL SO2 Column Density - 
STL Float32 g/m2 

 0   

SO2-U SO2 Uncertainty Float32 g/m2  0   
DQ Data Quality Int8 n/a  0   
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8 Calibration/Validation Plans 
Plume Tracker, together with its predecessor MAP_SO2, are the heritage for the PGS. The 

retrieval procedures have been evaluated rigorously through simulation-based sensitivity analyses 

(Realmuto et al., 1994, 1997; Realmuto, 2000), multi-sensor comparisons (Realmuto and Worden, 

2000; Kearney et al., 2009; Thomas et al., 2009, Realmuto and Berk, 2016; Corradini et al., 2021), 

and comparisons with ground-based measurements (Realmuto and Berk, 2016).  

We will continue this testing regime with OTTER-based product. Intercomparisons be-

tween retrievals based on OTTER and those based on other instruments are the most practicable 

validation exercises.  The minimum requirement is that the OTTER retrievals should agree with 

retrievals based on another TIR sensor when the data are processed with the same retrieval algo-

rithms. Figure 14 illustrates a favorable intercomparison between MODIS- and VIIRS-based re-

trievals generated by Plume Tracker.  

A more rigorous validation is the intercomparison of retrievals from different instruments 

generated with different algorithms. Figure 15 contains the results of a multi-sensor intercompar-

ison covering a four-day period (26-30 December 2018) during the 2018 “Christmas” Eruption of 

Mount Etna (Corradini et al., 2021). The VIIRS-based retrievals (blue squares), generated with 

Plume Tracker, are in excellent agreement with the retrievals based on near-continuous observa-

tions from the SEVIRI instrument (gray bars). 

Mount Etna will be the principal site for validation of our OTTER SO2 retrievals. We will 

leverage the exceptional satellite data processing and ground-based monitoring resources of the 

National Institute of Geophysics and Volcanology (INGV), as described recently by Corradini et 

al. (2020; 2021). We will access the near real time (NRT) SO2 retrievals derived from SEVIRI  
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 data, which flies on the geosta-

tionary Meteosat Second Generation 

(MSG) platform, and Flux  

Automatic Measurements 

(FLAME) network of upward-looking 

UV spectrometers installed on the flanks 

of Mount Etna. The SEVIRI observa-

tions are acquired every 15 min (Fig. 

15), and INGV estimates SO2 column 

density, ash loading, and plume height 

continuously from the SEVIRI TIR radi-

ance measurements. The FLAME net-

work scans the sky every five minutes 

over day-time periods of ~9 h. This con-

tinuous monitoring ensures that we will 

have SEVIRI and FLAME coverage for 

all our daytime overpasses of Mount 

Etna (weather and viewing conditions 

permitting), and SERIVI coverage for 

night-time overpasses. 

 
  

 

Figure 15. Validation of retrieval procedures through inter-
comparison of results from different instruments. SO2 re-
trievals based on (a) VIIRS-SNPP and (b) MODIS night-
time observations of the Bardarbunga plume are virtually 
identical. The column density estimates were derived from 
observations acquired within a 10-min interval on 5 Sept 
2014. For both sets of retrievals, the ambient atmospheric 
conditions were described with AIRS L2 profiles. 
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Figure 16. Inter-comparison of SO2 retrievals based on TIR data from SEVIRI, MODIS, VIIRS, AIRS, 
and IASI and UV data from TROPOMI. The study covered a four-day period (26 – 30 December 2018) 
during the 2018 ‘Christmas’ Eruption of Mt. Etna. The VIIRS-based retrievals (blue squares), generated 
with Plume Tracker, are in excellent agreement with the retrievals based on near-continuous observations 
from the geostationary SEVIRI instrument (gray bars). Figure modified from Corradini et al. (2021). 
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